Privacy-Preserving Secure Neighbor Discovery for Wireless Networks
Abstract
Traditional Neighbor Discovery (ND) and Secure Neighbor Discovery (SND) are key elements for network functionality. SND is a hard problem, satisfying not only typical security properties (authentication, integrity) but also verification of direct communication, which involves distance estimation based on time measurements and device coordinates. Defeating relay attacks, also known as "wormholes", leading to stealthy Byzantine links and significant degradation of communication and adversarial control, is key in many wireless networked systems. However, SND is not concerned with privacy; it necessitates revealing the identity and location of the device(s) participating in the protocol execution. This can be a deterrent for deployment, especially involving user-held devices in the emerging Internet of Things (IoT) enabled smart environments. To address this challenge, we present a novel Privacy-Preserving Secure Neighbor Discovery (PP-SND) protocol, enabling devices to perform SND without revealing their actual identities and locations, effectively decoupling discovery from the exposure of sensitive information. We use Homomorphic Encryption (HE) for computing device distances without revealing their actual coordinates, as well as employing a pseudonymous device authentication to hide identities while preserving communication integrity. PP-SND provides SND [1] along with pseudonymity, confidentiality, and unlinkability. Our presentation here is not specific to one wireless technology, and we assess the performance of the protocols (cryptographic overhead) on a Raspberry Pi 4 and provide a security and privacy analysis.