Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Unmanned Aerial Vehicles (UAVs) depend on onboard sensors for perception, navigation, and control. However, these sensors are susceptible to physical attacks, such as GPS spoofing, that can corrupt state estimates and lead to unsafe behavior. While reinforcement learning (RL) offers adaptive control capabilities, existing safe RL methods are ineffective against such attacks. We present ARMOR (Adaptive Robust Manipulation-Optimized State Representations), an attack-resilient, model-free RL controller that enables robust UAV operation under adversarial sensor manipulation. Instead of relying on raw sensor observations, ARMOR learns a robust latent representation of the UAV's physical state via a two-stage training framework. In the first stage, a teacher encoder, trained with privileged attack information, generates attack-aware latent states for RL policy training. In the second stage, a student encoder is trained via supervised learning to approximate the teacher's latent states using only historical sensor data, enabling real-world deployment without privileged information. Our experiments show that ARMOR outperforms conventional methods, ensuring UAV safety. Additionally, ARMOR improves generalization to unseen attacks and reduces training cost by eliminating the need for iterative adversarial training.
A sophisticated malspam campaign was recently uncovered targeting Latin American countries, with a particular focus on Brazil. This operation utilizes a highly deceptive phishing email to trick users into executing a malicious MSI file, initiating a multi-stage infection. The core of the attack leverages DLL side-loading, where a legitimate executable from Valve Corporation is used to load a trojanized DLL, thereby bypassing standard security defenses. Once active, the malware, a variant of QuasarRAT known as BlotchyQuasar, is capable of a wide range of malicious activities. It is designed to steal sensitive browser-stored credentials and banking information, the latter through fake login windows mimicking well-known Brazilian banks. The threat establishes persistence by modifying the Windows registry , captures user keystrokes through keylogging , and exfiltrates stolen data to a Command-and-Control (C2) server using encrypted payloads. Despite its advanced capabilities, the malware code exhibits signs of rushed development, with inefficiencies and poor error handling that suggest the threat actors prioritized rapid deployment over meticulous design. Nonetheless, the campaign extensive reach and sophisticated mechanisms pose a serious and immediate threat to the targeted regions, underscoring the need for robust cybersecurity defenses.
Pressure sensors are an integrated component of modern Heating, Ventilation, and Air Conditioning (HVAC) systems. As these pressure sensors operate within the 0-10 Pa range, support high sampling frequencies of 0.5-2 kHz, and are often placed close to human proximity, they can be used to eavesdrop on confidential conversation, since human speech has a similar audible range of 0-10 Pa and a bandwidth of 4 kHz for intelligible quality. This paper presents WaLi, which reconstructs intelligible speech from the low-resolution and noisy pressure sensor data by providing the following technical contributions: (i) WaLi reconstructs intelligible speech from a minimum of 0.5 kHz sampling frequency of pressure sensors, whereas previous work can only detect hot words/phrases. WaLi uses complex-valued conformer and Complex Global Attention Block (CGAB) to capture inter-phoneme and intra-phoneme dependencies that exist in the low-resolution pressure sensor data. (ii) WaLi handles the transient noise injected from HVAC fans and duct vibrations, by reconstructing both the clean magnitude and phase of the missing frequencies of the low-frequency aliased components. Extensive measurement studies on real-world pressure sensors show an LSD of 1.24 and NISQA-MOS of 1.78 for 0.5 kHz to 8 kHz upsampling. We believe that such levels of accuracy pose a significant threat when viewed from a privacy perspective that has not been addressed before for pressure sensors.
The industrial market continuously needs reliable solutions to secure autonomous systems. Especially as these systems become more complex and interconnected, reliable security solutions are becoming increasingly important. One promising solution to tackle this challenge is using smart contracts designed to meet contractual conditions, avoid malicious errors, secure exchanges, and minimize the need for reliable intermediaries. However, smart contracts are immutable. Moreover, there are different smart contract execution architectures (namely Order-Execute and Execute-Order-Validate) that have different throughputs. In this study, we developed an evaluation model for assessing the security of reliable smart contract execution. We then developed a realistic smart contract enabled IoT energy case study. Finally, we simulate the developed case study to evaluate several smart contract security vulnerabilities reported in the literature. Our results show that the Execute-Order-Validate architecture is more promising regarding reliability and security.
We consider the problem of a game theorist analyzing a game that uses cryptographic protocols. Ideally, a theorist abstracts protocols as ideal, implementation-independent primitives, letting conclusions in the "ideal world" carry over to the "real world." This is crucial, since the game theorist cannot--and should not be expected to--handle full cryptographic complexity. In today's landscape, the rise of distributed ledgers makes a shared language between cryptography and game theory increasingly necessary. The security of cryptographic protocols hinges on two types of assumptions: state-of-the-world (e.g., "factoring is hard") and behavioral (e.g., "honest majority"). We observe that for protocols relying on behavioral assumptions (e.g., ledgers), our goal is unattainable in full generality. For state-of-the-world assumptions, we show that standard solution concepts, e.g., ($\epsilon$-)Nash equilibria, are not robust to transfer from the ideal to the real world. We propose a new solution concept: the pseudo-Nash equilibrium. Informally, a profile $s=(s_1,\dots,s_n)$ is a pseudo-Nash equilibrium if, for any player $i$ and deviation $s'_i$ with higher expected utility, $i$'s utility from $s_i$ is (computationally) indistinguishable from that of $s'_i$. Pseudo-Nash is simpler and more accessible to game theorists than prior notions addressing the mismatch between (asymptotic) cryptography and game theory. We prove that Nash equilibria in games with ideal, unbreakable cryptography correspond to pseudo-Nash equilibria when ideal cryptography is instantiated with real protocols (under state-of-the-world assumptions). Our translation is conceptually simpler and more general: it avoids tuning or restricting utility functions in the ideal game to fit quirks of cryptographic implementations. Thus, pseudo-Nash lets us study game-theoretic and cryptographic aspects separately and seamlessly.
Delegated quantum computing (DQC) allows clients with low quantum capabilities to outsource computations to a server hosting a quantum computer. This process is typically envisioned within the measurement-based quantum computing framework, as it naturally facilitates blindness of inputs and computation. Hence, the overall process of setting up and conducting the computation encompasses a sequence of three stages: preparing the qubits, entangling the qubits to obtain the resource state, and measuring the qubits to run the computation. There are two primary approaches to distributing these stages between the client and the server that impose different constraints on cryptographic techniques and experimental implementations. In the prepare-and-send setting, the client prepares the qubits and sends them to the server, while in the receive-and-measure setting, the client receives the qubits from the server and measures them. Although these settings have been extensively studied independently, their interrelation and whether setting-dependent theoretical constraints are inevitable remain unclear. By implementing the key components of most DQC protocols in the respective missing setting, we provide a method to build prospective protocols in both settings simultaneously and to translate existing protocols from one setting into the other.
The advancement of Pre-Trained Language Models (PTLMs) and Large Language Models (LLMs) has led to their widespread adoption across diverse applications. Despite their success, these models remain vulnerable to attacks that exploit their inherent weaknesses to bypass safety measures. Two primary inference-phase threats are token-level and prompt-level jailbreaks. Token-level attacks embed adversarial sequences that transfer well to black-box models like GPT but leave detectable patterns and rely on gradient-based token optimization, whereas prompt-level attacks use semantically structured inputs to elicit harmful responses yet depend on iterative feedback that can be unreliable. To address the complementary limitations of these methods, we propose two hybrid approaches that integrate token- and prompt-level techniques to enhance jailbreak effectiveness across diverse PTLMs. GCG + PAIR and the newly explored GCG + WordGame hybrids were evaluated across multiple Vicuna and Llama models. GCG + PAIR consistently raised attack-success rates over its constituent techniques on undefended models; for instance, on Llama-3, its Attack Success Rate (ASR) reached 91.6%, a substantial increase from PAIR's 58.4% baseline. Meanwhile, GCG + WordGame matched the raw performance of WordGame maintaining a high ASR of over 80% even under stricter evaluators like Mistral-Sorry-Bench. Crucially, both hybrids retained transferability and reliably pierced advanced defenses such as Gradient Cuff and JBShield, which fully blocked single-mode attacks. These findings expose previously unreported vulnerabilities in current safety stacks, highlight trade-offs between raw success and defensive robustness, and underscore the need for holistic safeguards against adaptive adversaries.
Data brokers collect and sell the personal information of millions of individuals, often without their knowledge or consent. The California Consumer Privacy Act (CCPA) grants consumers the legal right to request access to, or deletion of, their data. To facilitate these requests, California maintains an official registry of data brokers. However, the extent to which these entities comply with the law is unclear. This paper presents the first large-scale, systematic study of CCPA compliance of all 543 officially registered data brokers. Data access requests were manually submitted to each broker, followed by in-depth analyses of their responses (or lack thereof). Above 40% failed to respond at all, in an apparent violation of the CCPA. Data brokers that responded requested personal information as part of their identity verification process, including details they had not previously collected. Paradoxically, this means that exercising one's privacy rights under CCPA introduces new privacy risks. Our findings reveal rampant non-compliance and lack of standardization of the data access request process. These issues highlight an urgent need for stronger enforcement, clearer guidelines, and standardized, periodic compliance checks to enhance consumers' privacy protections and improve data broker accountability.
The 3D printing industry is rapidly growing and increasingly adopted across various sectors including manufacturing, healthcare, and defense. However, the operational setup often involves hazardous environments, necessitating remote monitoring through cameras and other sensors, which opens the door to cyber-based attacks. In this paper, we show that an adversary with access to video recordings of the 3D printing process can reverse engineer the underlying 3D print instructions. Our model tracks the printer nozzle movements during the printing process and maps the corresponding trajectory into G-code instructions. Further, it identifies the correct parameters such as feed rate and extrusion rate, enabling successful intellectual property theft. To validate this, we design an equivalence checker that quantitatively compares two sets of 3D print instructions, evaluating their similarity in producing objects alike in shape, external appearance, and internal structure. Unlike simple distance-based metrics such as normalized mean square error, our equivalence checker is both rotationally and translationally invariant, accounting for shifts in the base position of the reverse engineered instructions caused by different camera positions. Our model achieves an average accuracy of 90.87 percent and generates 30.20 percent fewer instructions compared to existing methods, which often produce faulty or inaccurate prints. Finally, we demonstrate a fully functional counterfeit object generated by reverse engineering 3D print instructions from video.
Today's text-to-image generative models are trained on millions of images sourced from the Internet, each paired with a detailed caption produced by Vision-Language Models (VLMs). This part of the training pipeline is critical for supplying the models with large volumes of high-quality image-caption pairs during training. However, recent work suggests that VLMs are vulnerable to stealthy adversarial attacks, where adversarial perturbations are added to images to mislead the VLMs into producing incorrect captions. In this paper, we explore the feasibility of adversarial mislabeling attacks on VLMs as a mechanism to poisoning training pipelines for text-to-image models. Our experiments demonstrate that VLMs are highly vulnerable to adversarial perturbations, allowing attackers to produce benign-looking images that are consistently miscaptioned by the VLM models. This has the effect of injecting strong "dirty-label" poison samples into the training pipeline for text-to-image models, successfully altering their behavior with a small number of poisoned samples. We find that while potential defenses can be effective, they can be targeted and circumvented by adaptive attackers. This suggests a cat-and-mouse game that is likely to reduce the quality of training data and increase the cost of text-to-image model development. Finally, we demonstrate the real-world effectiveness of these attacks, achieving high attack success (over 73%) even in black-box scenarios against commercial VLMs (Google Vertex AI and Microsoft Azure).
Quantum Machine Learning (QML) integrates quantum computing with classical machine learning, primarily to solve classification, regression and generative tasks. However, its rapid development raises critical security challenges in the Noisy Intermediate-Scale Quantum (NISQ) era. This chapter examines adversarial threats unique to QML systems, focusing on vulnerabilities in cloud-based deployments, hybrid architectures, and quantum generative models. Key attack vectors include model stealing via transpilation or output extraction, data poisoning through quantum-specific perturbations, reverse engineering of proprietary variational quantum circuits, and backdoor attacks. Adversaries exploit noise-prone quantum hardware and insufficiently secured QML-as-a-Service (QMLaaS) workflows to compromise model integrity, ownership, and functionality. Defense mechanisms leverage quantum properties to counter these threats. Noise signatures from training hardware act as non-invasive watermarks, while hardware-aware obfuscation techniques and ensemble strategies disrupt cloning attempts. Emerging solutions also adapt classical adversarial training and differential privacy to quantum settings, addressing vulnerabilities in quantum neural networks and generative architectures. However, securing QML requires addressing open challenges such as balancing noise levels for reliability and security, mitigating cross-platform attacks, and developing quantum-classical trust frameworks. This chapter summarizes recent advances in attacks and defenses, offering a roadmap for researchers and practitioners to build robust, trustworthy QML systems resilient to evolving adversarial landscapes.
We introduce a novel cybersecurity encounter simulator between a network defender and an attacker designed to facilitate game-theoretic modeling and analysis while maintaining many significant features of real cyber defense. Our simulator, built within the OpenAI Gym framework, incorporates realistic network topologies, vulnerabilities, exploits (including-zero-days), and defensive mechanisms. Additionally, we provide a formal simulation-based game-theoretic model of cyberdefense using this simulator, which features a novel approach to modeling zero-days exploits, and a PSRO-style approach for approximately computing equilibria in this game. We use our simulator and associated game-theoretic framework to analyze the Volt Typhoon advanced persistent threat (APT). Volt Typhoon represents a sophisticated cyber attack strategy employed by state-sponsored actors, characterized by stealthy, prolonged infiltration and exploitation of network vulnerabilities. Our experimental results demonstrate the efficacy of game-theoretic strategies in understanding network resilience against APTs and zero-days, such as Volt Typhoon, providing valuable insight into optimal defensive posture and proactive threat mitigation.
Traffic anomalies and attacks are commonplace in today's networks and identifying them rapidly and accurately is critical for large network operators. For a statistical intrusion detection system (IDS), it is crucial to detect at the flow-level for accurate detection and mitigation. However, existing IDS systems offer only limited support for 1) interactively examining detected intrusions and anomalies, 2) analyzing worm propagation patterns, 3) and discovering correlated attacks. These problems are becoming even more acute as the traffic on today's high-speed routers continues to grow. IDGraphs is an interactive visualization system for intrusion detection that addresses these challenges. The central visualization in the system is a flow-level trace plotted with time on the horizontal axis and aggregated number of unsuccessful connections on the vertical axis. We then summarize a stack of tens or hundreds of thousands of these traces using the Histographs [RW05] technique, which maps data frequency at each pixel to brightness. Users may then interactively query the summary view, performing analysis by highlighting subsets of the traces. For example, brushing a linked correlation matrix view highlights traces with similar patterns, revealing distributed attacks that are difficult to detect using standard statistical analysis. We apply IDGraphs system to a real network router data-set with 179M flow-level records representing a total traffic of 1.16TB. The system successfully detects and analyzes a variety of attacks and anomalies, including port scanning, worm outbreaks, stealthy TCP SYN floodings, and some distributed attacks.
Privacy risks in differentially private (DP) systems increase significantly when data is correlated, as standard DP metrics often underestimate the resulting privacy leakage, leaving sensitive information vulnerable. Given the ubiquity of dependencies in real-world databases, this oversight poses a critical challenge for privacy protections. Bayesian differential privacy (BDP) extends DP to account for these correlations, yet current BDP mechanisms indicate notable utility loss, limiting its adoption. In this work, we address whether BDP can be realistically implemented in common data structures without sacrificing utility -- a key factor for its applicability. By analyzing arbitrary and structured correlation models, including Gaussian multivariate distributions and Markov chains, we derive practical utility guarantees for BDP. Our contributions include theoretical links between DP and BDP and a novel methodology for adapting DP mechanisms to meet the BDP requirements. Through evaluations on real-world databases, we demonstrate that our novel theorems enable the design of BDP mechanisms that maintain competitive utility, paving the way for practical privacy-preserving data practices in correlated settings.
Kubernetes has emerged as the de facto standard for container orchestration. Unfortunately, its increasing popularity has also made it an attractive target for malicious actors. Despite extensive research on securing Kubernetes, little attention has been paid to the impact of network configuration on the security of application deployments. This paper addresses this gap by conducting a comprehensive analysis of network misconfigurations in a Kubernetes cluster with specific reference to lateral movement. Accordingly, we carried out an extensive evaluation of 287 open-source applications belonging to six different organizations, ranging from IT companies and public entities to non-profits. As a result, we identified 634 misconfigurations, well beyond what could be found by solutions in the state of the art. We responsibly disclosed our findings to the concerned organizations and engaged in a discussion to assess their severity. As of now, misconfigurations affecting more than thirty applications have been fixed with the mitigations we proposed.
Phishing attacks pose a significant cybersecurity threat, evolving rapidly to bypass detection mechanisms and exploit human vulnerabilities. This paper introduces PhishKey to address the challenges of adaptability, robustness, and efficiency. PhishKey is a novel phishing detection method using automatic feature extraction from hybrid sources. PhishKey combines character-level processing with Convolutional Neural Networks (CNN) for URL classification, and a Centroid-Based Key Component Phishing Extractor (CAPE) for HTML content at the word level. CAPE reduces noise and ensures complete sample processing avoiding crop operations on the input data. The predictions from both modules are integrated using a soft-voting ensemble to achieve more accurate and reliable classifications. Experimental evaluations on four state-of-the-art datasets demonstrate the effectiveness of PhishKey. It achieves up to 98.70% F1 Score and shows strong resistance to adversarial manipulations such as injection attacks with minimal performance degradation.
Electromagnetic (EM) covert channels pose significant threats to computer and communications security in air-gapped networks. Previous works exploit EM radiation from various components (e.g., video cables, memory buses, CPUs) to secretly send sensitive information. These approaches typically require the attacker to deploy highly specialized receivers near the victim, which limits their real-world impact. This paper reports a new EM covert channel, TEMPEST-LoRa, that builds on Cross-Technology Covert Communication (CTCC), which could allow attackers to covertly transmit EM-modulated secret data from air-gapped networks to widely deployed operational LoRa receivers from afar. We reveal the potential risk and demonstrate the feasibility of CTCC by tackling practical challenges involved in manipulating video cables to precisely generate the EM leakage that could readily be received by third-party commercial LoRa nodes/gateways. Experiment results show that attackers can reliably decode secret data modulated by the EM leakage from a video cable at a maximum distance of 87.5m or a rate of 21.6 kbps. We note that the secret data transmission can be performed with monitors turned off (therefore covertly).
The ability of deep neural networks (DNNs) come from extracting and interpreting features from the data provided. By exploiting intermediate features in DNNs instead of relying on hard labels, we craft adversarial perturbation that generalize more effectively, boosting black-box transferability. These features ubiquitously come from supervised learning in previous work. Inspired by the exceptional synergy between self-supervised learning and the Transformer architecture, this paper explores whether exploiting self-supervised Vision Transformer (ViT) representations can improve adversarial transferability. We present dSVA -- a generative dual self-supervised ViT features attack, that exploits both global structural features from contrastive learning (CL) and local textural features from masked image modeling (MIM), the self-supervised learning paradigm duo for ViTs. We design a novel generative training framework that incorporates a generator to create black-box adversarial examples, and strategies to train the generator by exploiting joint features and the attention mechanism of self-supervised ViTs. Our findings show that CL and MIM enable ViTs to attend to distinct feature tendencies, which, when exploited in tandem, boast great adversarial generalizability. By disrupting dual deep features distilled by self-supervised ViTs, we are rewarded with remarkable black-box transferability to models of various architectures that outperform state-of-the-arts. Code available at https://github.com/spencerwooo/dSVA.