Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Efficiently retrieving specific instrument timbres from audio mixtures remains a challenge in digital music production. This paper introduces a contrastive learning framework for musical instrument retrieval, enabling direct querying of instrument databases using a single model for both single- and multi-instrument sounds. We propose techniques to generate realistic positive/negative pairs of sounds for virtual musical instruments, such as samplers and synthesizers, addressing limitations in common audio data augmentation methods. The first experiment focuses on instrument retrieval from a dataset of 3,884 instruments, using single-instrument audio as input. Contrastive approaches are competitive with previous works based on classification pre-training. The second experiment considers multi-instrument retrieval with a mixture of instruments as audio input. In this case, the proposed contrastive framework outperforms related works, achieving 81.7\% top-1 and 95.7\% top-5 accuracies for three-instrument mixtures.
Recently, Large Audio Language Models (LALMs) have progressed rapidly, demonstrating their strong efficacy in universal audio understanding through cross-modal integration. To evaluate the LALM's audio understanding performance, researchers have proposed different benchmarks. However, key aspects for real-world interactions are underexplored in existing benchmarks, i.e., audio signals typically contain both speech and non-speech components, and energy levels of these components can vary significantly across different scenarios. Moreover, most benchmarks do not consider the joint understanding of speech, scene, and events within the same audio clip. In this work, we introduce SSEU-Bench, the first versatile audio understanding benchmark that explicitly accounts for energy differences between speech and non-speech audio, with both independent and joint understanding settings for speech, scene, and events. Furthermore, we demonstrate that some LALMs tend to underperform on certain tasks in a joint understanding setting. To address this issue, we introduce Chain-of-Thought, which effectively improves the LALM's joint audio understanding performance by decomposing complex tasks into simpler reasoning steps
Speech therapy plays a critical role in training speech disorders caused by neurological impairments such as stroke. However, traditional manual and computer-assisted systems are limited in real-time accessibility and articulatory motion feedback, constraining their practical utility. Recent advances in multimodal large language models (MLLMs) have demonstrated significant potential in healthcare, particularly through their ability to integrate multimodal data for adaptive assessment and therapeutic feedback. Nevertheless, challenges including insufficient acquisition and fusion of articulatory information, inadequate parsing of articulatory organ motion trajectories, and the scarcity of high-quality domain-specific datasets hinder the application of MLLMs in speech therapy. To address these limitations, we propose an MLLM-based speech rehabilitation assistance system that synergistically leverages ultrasound tongue imaging and speech signals to deliver precise, interactive articulatory feedback. We construct a high-quality domain-specific dataset comprising UTI-speech dialogue pairs. This dataset facilitates fine-tuning to enhance the model's clinical adaptability. Building on this dataset, our methods achieves spatiotemporal fusion training strategy of ultrasound videos and speech signals, enabling fine-grained articulatory impairment analysis and ultimately generating actionable feedback.
End-to-end multi-talker automatic speech recognition (MTASR) faces significant challenges in accurately transcribing overlapping speech, especially under high-overlap conditions. To address these challenges, we proposed Global-Local Aware Dynamic (GLAD) Mixture-of-Experts, which dynamically fuse speaker-aware global information and fine-grained local features to guide expert selection. This mechanism enables speaker-specific routing by leveraging both global context and local acoustic cues. Experiments on LibriSpeechMix show that GLAD outperforms existing MTASR approaches, particularly in challenging multi-talker scenarios. To our best knowledge, this is the first work to apply Mixture-of-Experts (MoE) to end-to-end MTASR with a global-local fusion strategy. Our code and train dataset can be found at https://github.com/NKU-HLT/GLAD.
Real-world speech communication is often hampered by a variety of distortions that degrade quality and intelligibility. While many speech enhancement algorithms target specific degradations like noise or reverberation, they often fall short in realistic scenarios where multiple distortions co-exist and interact. To spur research in this area, we introduce the Speech Restoration Challenge as part of the China Computer Federation (CCF) Advanced Audio Technology Competition (AATC) 2025. This challenge focuses on restoring speech signals affected by a composite of three degradation types: (1) complex acoustic degradations including non-stationary noise and reverberation; (2) signal-chain artifacts such as those from MP3 compression; and (3) secondary artifacts introduced by other pre-processing enhancement models. We describe the challenge's background, the design of the task, the comprehensive dataset creation methodology, and the detailed evaluation protocol, which assesses both objective performance and model complexity. Homepage: https://ccf-aatc.org.cn/.
Anomalous Sound Detection (ASD) is often formulated as a machine attribute classification task, a strategy necessitated by the common scenario where only normal data is available for training. However, the exhaustive collection of machine attribute labels is laborious and impractical. To address the challenge of missing attribute labels, this paper proposes an agglomerative hierarchical clustering method for the assignment of pseudo-attribute labels using representations derived from a domain-adaptive pre-trained model, which are expected to capture machine attribute characteristics. We then apply model adaptation to this pre-trained model through supervised fine-tuning for machine attribute classification, resulting in a new state-of-the-art performance. Evaluation on the Detection and Classification of Acoustic Scenes and Events (DCASE) 2025 Challenge dataset demonstrates that our proposed approach yields significant performance gains, ultimately outperforming our previous top-ranking system in the challenge.
Recent developments in voice cloning and talking head generation demonstrate impressive capabilities in synthesizing natural speech and realistic lip synchronization. Current methods typically require and are trained on large scale datasets and computationally intensive processes using clean studio recorded inputs that is infeasible in noisy or low resource environments. In this paper, we introduce a new modular pipeline comprising Tortoise text to speech. It is a transformer based latent diffusion model that can perform high fidelity zero shot voice cloning given only a few training samples. We use a lightweight generative adversarial network architecture for robust real time lip synchronization. The solution will contribute to many essential tasks concerning less reliance on massive pre training generation of emotionally expressive speech and lip synchronization in noisy and unconstrained scenarios. The modular structure of the pipeline allows an easy extension for future multi modal and text guided voice modulation and it could be used in real world systems.
In this paper, we present a method for conducting comparative corpus studies in musicology that reduces the time-consuming digitization process. Instead of encoding whole corpora of musical sources, we suggest sampling bars from these sources. We address the challenge of selecting representative samples and evaluate three different sampling methods. We used Beethoven's Bagatelles Op. 33 as a case study to find the method that works best in finding samples representative with respect to differences. We believe that this approach offers significant value to musicological research by enabling large-scale analyses and thereby statistically sound results. Moreover, we believe our work to be a valuable step toward understanding nineteenth-century editorial practices and enriching the field of scholarly editing of historical musical works.
Existing multi-timbre transcription models struggle with generalization beyond pre-trained instruments and rigid source-count constraints. We address these limitations with a lightweight deep clustering solution featuring: 1) a timbre-agnostic backbone achieving state-of-the-art performance with only half the parameters of comparable models, and 2) a novel associative memory mechanism that mimics human auditory cognition to dynamically encode unseen timbres via attention-based clustering. Our biologically-inspired framework enables adaptive polyphonic separation with minimal training data (12.5 minutes), supported by a new synthetic dataset method offering cost-effective, high-precision multi-timbre generation. Experiments show the timbre-agnostic transcription model outperforms existing models on public benchmarks, while the separation module demonstrates promising timbre discrimination. This work provides an efficient framework for timbre-related music transcription and explores new directions for timbre-aware separation through cognitive-inspired architectures.
In this work, we explore the use of Osu!, a community-based rhythm game, as an alternative source of beat and downbeat annotations. Osu! beatmaps are created and refined by a large, diverse community and span underrepresented genres such as anime, Vocaloid, and video game music. We introduce a pipeline for extracting annotations from Osu! beatmaps and partition them into meaningful subsets. Through manual analysis, we find that beatmaps with a single timing point or widely spaced multiple timing points (>=5 seconds apart) provide reliable annotations, while closely spaced timing points (<5 seconds apart) often require additional curation. We also observe high consistency across multiple annotations of the same song. This study demonstrates the potential of Osu! data as a scalable, diverse, and community-driven resource for MIR research. We release our pipeline and a high-quality subset osu2beat2025 to support further exploration: https://github.com/ziyunliu4444/osu2mir.
Target Speaker Extraction (TSE) is a critical challenge in cocktail party scenarios. While leveraging multiple modalities, such as voice, lip, face, and expression embeddings, can enhance performance, real-world applications often suffer from intermittent modality dropout. This paper presents a comprehensive study on the interactions and robustness of various multimodal fusion strategies under varying degrees of modality dropout. We build upon a state-of-the-art audio-visual speech enhancement system and integrate four distinct speaker identity cues: lip embeddings for synchronized contextual information, a voice speaker embedding extracted via cross-attention for acoustic consistency, a static face embedding for speaker identity, and a novel dynamic expression embedding for frame-wise emotional features. We systematically evaluate different combinations of these modalities under two key training regimes: zero dropout and 80% modality dropout. Extensive experiments demonstrate that while a full multimodal ensemble achieves optimal performance under ideal (zero dropout) conditions, its effectiveness diminishes significantly when test-time dropout occurs without prior exposure during training. Crucially, we show that training with a high (80%) modality dropout rate dramatically enhances model robustness, enabling the system to maintain superior performance even under severe test-time missing modalities. Our findings highlight that voice embeddings exhibit consistent robustness, while the proposed expression embedding provides valuable complementary information. This work underscores the importance of training strategies that account for real-world imperfection, moving beyond pure performance maximization to achieve practical reliability in multimodal speech enhancement systems.
In recent years, automatic speech recognition (ASR) has witnessed transformative advancements driven by three complementary paradigms: data scaling, model size scaling, and deep integration with large language models (LLMs). However, LLMs are prone to hallucination, which can significantly degrade user experience in real-world ASR applications. In this paper, we present FunAudio-ASR, a large-scale, LLM-based ASR system that synergistically combines massive data, large model capacity, LLM integration, and reinforcement learning to achieve state-of-the-art performance across diverse and complex speech recognition scenarios. Moreover, FunAudio-ASR is specifically optimized for practical deployment, with enhancements in streaming capability, noise robustness, code-switching, hotword customization, and satisfying other real-world application requirements. Experimental results show that while most LLM-based ASR systems achieve strong performance on open-source benchmarks, they often underperform on real industry evaluation sets. Thanks to production-oriented optimizations, FunAudio-ASR achieves SOTA performance on real application datasets, demonstrating its effectiveness and robustness in practical settings.
Speech emotion recognition systems often predict a consensus value generated from the ratings of multiple annotators. However, these models have limited ability to predict the annotation of any one person. Alternatively, models can learn to predict the annotations of all annotators. Adapting such models to new annotators is difficult as new annotators must individually provide sufficient labeled training data. We propose to leverage inter-annotator similarity by using a model pre-trained on a large annotator population to identify a similar, previously seen annotator. Given a new, previously unseen, annotator and limited enrollment data, we can make predictions for a similar annotator, enabling off-the-shelf annotation of unseen data in target datasets, providing a mechanism for extremely low-cost personalization. We demonstrate our approach significantly outperforms other off-the-shelf approaches, paving the way for lightweight emotion adaptation, practical for real-world deployment.
Audio deepfake detection systems based on frozen pre-trained self-supervised learning (SSL) encoders show a high level of performance when combined with layer-weighted pooling methods, such as multi-head factorized attentive pooling (MHFA). However, they still struggle to generalize to out-of-domain (OOD) conditions. We tackle this problem by studying the behavior of six different pre-trained SSLs, on four different test corpora. We perform a layer-by-layer analysis to determine which layers contribute most. Next, we study the pooling head, comparing a strategy based on a single layer with automatic selection via MHFA. We observed that selecting the best layer gave very good results, while reducing system parameters by up to 80%. A wide variation in performance as a function of test corpus and SSL model is also observed, showing that the pre-training strategy of the encoder plays a role. Finally, score-level fusion of several encoders improved generalization to OOD attacks.
Multimodal music emotion analysis leverages audio and MIDI modalities to enhance performance. While mainstream approaches focus on complex feature extraction networks, we posit that shortening the length of audio sequence features to mitigate redundancy, especially in contrast to MIDI's compact representation, may effectively boost task performance. To achieve this, we developed PoolingVQ by combining Vector Quantized Variational Autoencoder (VQVAE) with spatial pooling, which directly compresses audio feature sequences through local aggregation to reduce redundancy, then devised a two-stage co-attention approach to fuse audio and MIDI information. Experimental results on the public datasets EMOPIA and VGMIDI demonstrate that our multimodal framework achieves state-of-the-art overall performance, with PoolingVQ yielding some improvement.
We show that coherent, long-form musical composition can emerge from a decentralized swarm of identical, frozen foundation models that coordinate via stigmergic, peer-to-peer signals, without any weight updates. We compare a centralized multi-agent system with a global critic to a fully decentralized swarm in which bar-wise agents sense and deposit harmonic, rhythmic, and structural cues, adapt short-term memory, and reach consensus. Across symbolic, audio, and graph-theoretic analyses, the swarm yields superior quality while delivering greater diversity and structural variety and leads across creativity metrics. The dynamics contract toward a stable configuration of complementary roles, and self-similarity networks reveal a small-world architecture with efficient long-range connectivity and specialized bridging motifs, clarifying how local novelties consolidate into global musical form. By shifting specialization from parameter updates to interaction rules, shared memory, and dynamic consensus, MusicSwarm provides a compute- and data-efficient route to long-horizon creative structure that is immediately transferable beyond music to collaborative writing, design, and scientific discovery.
Online AI platforms for creating music from text prompts (AI music), such as Suno and Udio, are now being used by hundreds of thousands of users. Some AI music is appearing in advertising, and even charting, in multiple countries. How are these platforms being used? What subjects are inspiring their users? This article answers these questions for Suno and Udio using a large collection of songs generated by users of these platforms from May to October 2024. Using a combination of state-of-the-art text embedding models, dimensionality reduction and clustering methods, we analyze the prompts, tags and lyrics, and automatically annotate and display the processed data in interactive plots. Our results reveal prominent themes in lyrics, language preference, prompting strategies, as well as peculiar attempts at steering models through the use of metatags. To promote the musicological study of the developing cultural practice of AI-generated music we share our code and resources.
Text-guided source separation supports flexible audio editing across media and assistive applications, but existing models like AudioSep are too compute-heavy for edge deployment. Neural audio codec (NAC) models such as CodecFormer and SDCodec are compute-efficient but limited to fixed-class separation. We introduce CodecSep, the first NAC-based model for on-device universal, text-driven separation. CodecSep combines DAC compression with a Transformer masker modulated by CLAP-derived FiLM parameters. Across six open-domain benchmarks under matched training/prompt protocols, \textbf{CodecSep} surpasses \textbf{AudioSep} in separation fidelity (SI-SDR) while remaining competitive in perceptual quality (ViSQOL) and matching or exceeding fixed-stem baselines (TDANet, CodecFormer, SDCodec). In code-stream deployments, it needs just 1.35~GMACs end-to-end -- approximately $54\times$ less compute ($25\times$ architecture-only) than spectrogram-domain separators like AudioSep -- while remaining fully bitstream-compatible.