Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Understanding the internal mechanisms of large audio-language models (LALMs) is crucial for interpreting their behavior and improving performance. This work presents the first in-depth analysis of how LALMs internally perceive and recognize auditory attributes. By applying vocabulary projection on three state-of-the-art LALMs, we track how attribute information evolves across layers and token positions. We find that attribute information generally decreases with layer depth when recognition fails, and that resolving attributes at earlier layers correlates with better accuracy. Moreover, LALMs heavily rely on querying auditory inputs for predicting attributes instead of aggregating necessary information in hidden states at attribute-mentioning positions. Based on our findings, we demonstrate a method to enhance LALMs. Our results offer insights into auditory attribute processing, paving the way for future improvements.
A recent line of research on spoken language assessment (SLA) employs neural models such as BERT and wav2vec 2.0 (W2V) to evaluate speaking proficiency across linguistic and acoustic modalities. Although both models effectively capture features relevant to oral competence, each exhibits modality-specific limitations. BERT-based methods rely on ASR transcripts, which often fail to capture prosodic and phonetic cues for SLA. In contrast, W2V-based methods excel at modeling acoustic features but lack semantic interpretability. To overcome these limitations, we propose a system that integrates W2V with Phi-4 multimodal large language model (MLLM) through a score fusion strategy. The proposed system achieves a root mean square error (RMSE) of 0.375 on the official test set of the Speak & Improve Challenge 2025, securing second place in the competition. For comparison, the RMSEs of the top-ranked, third-ranked, and official baseline systems are 0.364, 0.384, and 0.444, respectively.
Research on generative systems in music has seen considerable attention and growth in recent years. A variety of attempts have been made to systematically evaluate such systems. We provide an interdisciplinary review of the common evaluation targets, methodologies, and metrics for the evaluation of both system output and model usability, covering subjective and objective approaches, qualitative and quantitative approaches, as well as empirical and computational methods. We discuss the advantages and challenges of such approaches from a musicological, an engineering, and an HCI perspective.
Fine-tuning pretrained ASR models for specific domains is challenging when labeled data is scarce. But unlabeled audio and labeled data from related domains are often available. We propose an incremental semi-supervised learning pipeline that first integrates a small in-domain labeled set and an auxiliary dataset from a closely related domain, achieving a relative improvement of 4% over no auxiliary data. Filtering based on multi-model consensus or named entity recognition (NER) is then applied to select and iteratively refine pseudo-labels, showing slower performance saturation compared to random selection. Evaluated on the multi-domain Wow call center and Fisher English corpora, it outperforms single-step fine-tuning. Consensus-based filtering outperforms other methods, providing up to 22.3% relative improvement on Wow and 24.8% on Fisher over single-step fine-tuning with random selection. NER is the second-best filter, providing competitive performance at a lower computational cost.
AI music generation has advanced rapidly, with models like diffusion and autoregressive algorithms enabling high-fidelity outputs. These tools can alter styles, mix instruments, or isolate them. Since sound can be visualized as spectrograms, image-generation algorithms can be applied to generate novel music. However, these algorithms are typically trained on fixed datasets, which makes it challenging for them to interpret and respond to user input accurately. This is especially problematic because music is highly subjective and requires a level of personalization that image generation does not provide. In this work, we propose a human-computation approach to gradually improve the performance of these algorithms based on user interactions. The human-computation element involves aggregating and selecting user ratings to use as the loss function for fine-tuning the model. We employ a genetic algorithm that incorporates user feedback to enhance the baseline performance of a model initially trained on a fixed dataset. The effectiveness of this approach is measured by the average increase in user ratings with each iteration. In the pilot test, the first iteration showed an average rating increase of 0.2 compared to the baseline. The second iteration further improved upon this, achieving an additional increase of 0.39 over the first iteration.
Speech inherently contains rich acoustic information that extends far beyond the textual language. In real-world spoken language understanding, effective interpretation often requires integrating semantic meaning (e.g., content), paralinguistic features (e.g., emotions, speed, pitch) and phonological characteristics (e.g., prosody, intonation, rhythm), which are embedded in speech. While recent multimodal Speech Large Language Models (SpeechLLMs) have demonstrated remarkable capabilities in processing audio information, their ability to perform fine-grained perception and complex reasoning in natural speech remains largely unexplored. To address this gap, we introduce MMSU, a comprehensive benchmark designed specifically for understanding and reasoning in spoken language. MMSU comprises 5,000 meticulously curated audio-question-answer triplets across 47 distinct tasks. To ground our benchmark in linguistic theory, we systematically incorporate a wide range of linguistic phenomena, including phonetics, prosody, rhetoric, syntactics, semantics, and paralinguistics. Through a rigorous evaluation of 14 advanced SpeechLLMs, we identify substantial room for improvement in existing models, highlighting meaningful directions for future optimization. MMSU establishes a new standard for comprehensive assessment of spoken language understanding, providing valuable insights for developing more sophisticated human-AI speech interaction systems. MMSU benchmark is available at https://huggingface.co/datasets/ddwang2000/MMSU. Evaluation Code is available at https://github.com/dingdongwang/MMSU_Bench.
In automatic speech recognition (ASR), phoneme-based multilingual pre-training and crosslingual fine-tuning is attractive for its high data efficiency and competitive results compared to subword-based models. However, Weighted Finite State Transducer (WFST) based decoding is limited by its complex pipeline and inability to leverage large language models (LLMs). Therefore, we propose LLM-based phoneme-to-grapheme (LLM-P2G) decoding for phoneme-based ASR, consisting of speech-to-phoneme (S2P) and phoneme-to-grapheme (P2G). A challenge is that there seems to have information loss in cascading S2P and P2G. To address this challenge, we propose two training strategies: data augmentation with noisy phonemes (DANP), and randomized top-$K$ marginalized (TKM) training and decoding. Our experimental results show that LLM-P2G outperforms WFST-based systems in crosslingual ASR for Polish and German, by relative WER reductions of 3.6% and 6.9% respectively.
We introduce LESS (Large Language Model Enhanced Semi-supervised Learning), a versatile framework that leverages Large Language Models (LLMs) to correct pseudo labels generated from in-the-wild data. Within the LESS framework, pseudo-labeled text from Automatic Speech Recognition (ASR) or Automatic Speech Translation (AST) of the unsupervised data is refined by an LLM, and augmented by a data filtering strategy to optimize LLM knowledge transfer efficiency. Experiments on both Mandarin ASR and Spanish-to-English AST tasks show that LESS achieves a notable absolute WER reduction of 3.77% on the Wenet Speech test set, as well as BLEU scores of 34.0 and 64.7 on Callhome and Fisher test sets respectively. These results validate the adaptability of LESS across different languages, tasks, and domains. Ablation studies conducted with various LLMs and prompt configurations provide novel insights into leveraging LLM-derived knowledge for speech processing applications.
We propose a model to obtain phonemic and prosodic labels of speech that are coherent with graphemes. Unlike previous methods that simply fine-tune a pre-trained ASR model with the labels, the proposed model conditions the label generation on corresponding graphemes by two methods: 1) Add implicit grapheme conditioning through prompt encoder using pre-trained BERT features. 2) Explicitly prune the label hypotheses inconsistent with the grapheme during inference. These methods enable obtaining parallel data of speech, the labels, and graphemes, which is applicable to various downstream tasks such as text-to-speech and accent estimation from text. Experiments showed that the proposed method significantly improved the consistency between graphemes and the predicted labels. Further, experiments on accent estimation task confirmed that the created parallel data by the proposed method effectively improve the estimation accuracy.
Speech disorders can make communication hard or even impossible for those who develop them. Personalised Text-to-Speech is an attractive option as a communication aid. We attempt voice reconstruction using a large speech model, with which we generate an approximation of a dysarthric speaker's voice prior to the onset of their condition. In particular, we investigate whether a state-of-the-art large speech model, Parler TTS, can generate intelligible speech while maintaining speaker identity. We curate a dataset and annotate it with relevant speaker and intelligibility information, and use this to fine-tune the model. Our results show that the model can indeed learn to generate from the distribution of this challenging data, but struggles to control intelligibility and to maintain consistent speaker identity. We propose future directions to improve controllability of this class of model, for the voice reconstruction task.
Most modern approaches for audio processing are opaque, in the sense that they do not provide an explanation for their decisions. For this reason, various methods have been proposed to explain the outputs generated by these models. Good explanations can result in interesting insights about the data or the model, as well as increase trust in the system. Unfortunately, evaluating the quality of explanations is far from trivial since, for most tasks, there is no clear ground truth explanation to use as reference. In this work, we propose a benchmark for time-localized explanations for audio classification models that uses time annotations of target events as a proxy for ground truth explanations. We use this benchmark to systematically optimize and compare various approaches for model-agnostic post-hoc explanation, obtaining, in some cases, close to perfect explanations. Finally, we illustrate the utility of the explanations for uncovering spurious correlations.
Audio-text models are widely used in zero-shot environmental sound classification as they alleviate the need for annotated data. However, we show that their performance severely drops in the presence of background sound sources. Our analysis reveals that this degradation is primarily driven by SNR levels of background soundscapes, and independent of background type. To address this, we propose a novel method that quantifies and integrates the contribution of background sources into the classification process, improving performance without requiring model retraining. Our domain adaptation technique enhances accuracy across various backgrounds and SNR conditions. Moreover, we analyze the modality gap between audio and text embeddings, showing that narrowing this gap improves classification performance. The method generalizes effectively across state-of-the-art prototypical approaches, showcasing its scalability and robustness for diverse environments.
To build an automatic speech recognition (ASR) system that can serve everyone in the world, the ASR needs to be robust to a wide range of accents including unseen accents. We systematically study how three different variables in training data -- the number of speakers, the audio duration per each individual speaker, and the diversity of accents -- affect ASR robustness towards unseen accents in a low-resource training regime. We observe that for a fixed number of ASR training hours, it is more beneficial to increase the number of speakers (which means each speaker contributes less) than the number of hours contributed per speaker. We also observe that more speakers enables ASR performance gains from scaling number of hours. Surprisingly, we observe minimal benefits to prioritizing speakers with different accents when the number of speakers is controlled. Our work suggests that practitioners should prioritize increasing the speaker count in ASR training data composition for new languages.
Generating accurate sounds for complex audio-visual scenes is challenging, especially in the presence of multiple objects and sound sources. In this paper, we propose an {\em interactive object-aware audio generation} model that grounds sound generation in user-selected visual objects within images. Our method integrates object-centric learning into a conditional latent diffusion model, which learns to associate image regions with their corresponding sounds through multi-modal attention. At test time, our model employs image segmentation to allow users to interactively generate sounds at the {\em object} level. We theoretically validate that our attention mechanism functionally approximates test-time segmentation masks, ensuring the generated audio aligns with selected objects. Quantitative and qualitative evaluations show that our model outperforms baselines, achieving better alignment between objects and their associated sounds. Project page: https://tinglok.netlify.app/files/avobject/
Cued Speech (CS) enhances lipreading through hand coding, providing precise speech perception support for the hearing-impaired. CS Video-to-Speech generation (CSV2S) task aims to convert the CS visual expressions (CS videos) of hearing-impaired individuals into comprehensible speech signals. Direct generation of speech from CS video (called single CSV2S) yields poor performance due to insufficient CS data. Current research mostly focuses on CS Recognition (CSR), which convert video content into linguistic text. Based on this, one straightforward way of CSV2S is to combine CSR with a Text-to-Speech system. This combined architecture relies on text as an intermediate medium for stepwise cross-modal alignment, which may lead to error propagation and temporal misalignment between speech and video dynamics. To address these challenges, we propose a novel approach that directly generates speech from CS videos without relying on intermediate text. Building upon this, we propose UniCUE, the first unified framework for CSV2S, whose core innovation lies in the integration of the CSR task that provides fine-grained visual-semantic information to facilitate speech generation from CS videos. More precisely, (1) a novel fine-grained semantic alignment pool to ensure precise mapping between visual features and speech contents; (2) a VisioPhonetic adapter to bridge cross-task representations, ensuring seamless compatibility between two distinct tasks (i.e., CSV2S and CSR); (3) a pose-aware visual processor is introduced to enhance fine-grained spatiotemporal correlations between lip and hand movements in CS video. Experiments on our new established Chinese CS dataset (14 cuers1: 8 hearing-impaired and 6 normal-hearing) show that our UniCUE significantly reduces Word Error Rate by 78.3% and improves lip-speech synchronization by 32% compared to the single CSV2S.
Automated speaking assessment (ASA) on opinion expressions is often hampered by the scarcity of labeled recordings, which restricts prompt diversity and undermines scoring reliability. To address this challenge, we propose a novel training paradigm that leverages a large language models (LLM) to generate diverse responses of a given proficiency level, converts responses into synthesized speech via speaker-aware text-to-speech synthesis, and employs a dynamic importance loss to adaptively reweight training instances based on feature distribution differences between synthesized and real speech. Subsequently, a multimodal large language model integrates aligned textual features with speech signals to predict proficiency scores directly. Experiments conducted on the LTTC dataset show that our approach outperforms methods relying on real data or conventional augmentation, effectively mitigating low-resource constraints and enabling ASA on opinion expressions with cross-modal information.
Verbatim transcription for automatic speaking assessment demands accurate capture of disfluencies, crucial for downstream tasks like error analysis and feedback. However, many ASR systems discard or generalize hesitations, losing important acoustic details. We fine-tune Whisper models on the Speak & Improve 2025 corpus using low-rank adaptation (LoRA), without recourse to external audio training data. We compare three annotation schemes: removing hesitations (Pure), generic tags (Rich), and acoustically precise fillers inferred by Gemini 2.0 Flash from existing audio-transcript pairs (Extra). Our challenge system achieved 6.47% WER (Pure) and 5.81% WER (Extra). Post-challenge experiments reveal that fine-tuning Whisper Large V3 Turbo with the "Extra" scheme yielded a 5.5% WER, an 11.3% relative improvement over the "Pure" scheme (6.2% WER). This demonstrates that explicit, realistic filled-pause labeling significantly enhances ASR accuracy for verbatim L2 speech transcription.
In this work, we introduce TexStat, a novel loss function specifically designed for the analysis and synthesis of texture sounds characterized by stochastic structure and perceptual stationarity. Drawing inspiration from the statistical and perceptual framework of McDermott and Simoncelli, TexStat identifies similarities between signals belonging to the same texture category without relying on temporal structure. We also propose using TexStat as a validation metric alongside Frechet Audio Distances (FAD) to evaluate texture sound synthesis models. In addition to TexStat, we present TexEnv, an efficient, lightweight and differentiable texture sound synthesizer that generates audio by imposing amplitude envelopes on filtered noise. We further integrate these components into TexDSP, a DDSP-inspired generative model tailored for texture sounds. Through extensive experiments across various texture sound types, we demonstrate that TexStat is perceptually meaningful, time-invariant, and robust to noise, features that make it effective both as a loss function for generative tasks and as a validation metric. All tools and code are provided as open-source contributions and our PyTorch implementations are efficient, differentiable, and highly configurable, enabling its use in both generative tasks and as a perceptually grounded evaluation metric.