Timbre-Adaptive Transcription: A Lightweight Architecture with Associative Memory for Dynamic Instrument Separation
Abstract
Existing multi-timbre transcription models struggle with generalization beyond pre-trained instruments and rigid source-count constraints. We address these limitations with a lightweight deep clustering solution featuring: 1) a timbre-agnostic backbone achieving state-of-the-art performance with only half the parameters of comparable models, and 2) a novel associative memory mechanism that mimics human auditory cognition to dynamically encode unseen timbres via attention-based clustering. Our biologically-inspired framework enables adaptive polyphonic separation with minimal training data (12.5 minutes), supported by a new synthetic dataset method offering cost-effective, high-precision multi-timbre generation. Experiments show the timbre-agnostic transcription model outperforms existing models on public benchmarks, while the separation module demonstrates promising timbre discrimination. This work provides an efficient framework for timbre-related music transcription and explores new directions for timbre-aware separation through cognitive-inspired architectures.