Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
Identifying parallel passages in biblical Hebrew is foundational in biblical scholarship for uncovering intertextual relationships. Traditional methods rely on manual comparison, which is labor-intensive and prone to human error. This study evaluates the potential of pre-trained transformer-based language models, including E5, AlephBERT, MPNet, and LaBSE, for detecting textual parallels in the Hebrew Bible. Focusing on known parallels between the books of Samuel/Kings and Chronicles, I assessed each model's capability to generate word embeddings that delineate parallel from non-parallel passages. Utilizing cosine similarity and Wasserstein Distance measures, I found that E5 and AlephBERT show significant promise, with E5 excelling in parallel detection and AlephBERT demonstrating stronger non-parallel differentiation. These findings indicate that pre-trained models can enhance the efficiency and accuracy of detecting intertextual parallels in ancient texts, suggesting broader applications for ancient language studies.
We show that a language model's ability to predict text is tightly linked to the breadth of its embedding space: models that spread their contextual representations more widely tend to achieve lower perplexity. Concretely, we find that representation dispersion - the average pairwise cosine distance among hidden vectors - strongly and negatively correlates with perplexity across diverse model families (LLaMA, Qwen, and others) and domains (Wikipedia, news, scientific abstracts). Beyond illustrating this link, we show how dispersion can be leveraged for a range of practical tasks without requiring labeled data. First, measuring dispersion on unlabeled text allows us to predict downstream accuracy in new domains, offering a data-efficient tool for model selection. Next, we find that identifying layers with higher dispersion pinpoints the best representations for retrieval-based methods such as kNN-LM, bypassing exhaustive layer-by-layer searches. Finally, we integrate a simple push-away objective into training, which increases dispersion in both single-domain and cross-domain scenarios and directly improves perplexity in each.
Though recent advances in multimodal models have demonstrated strong capabilities and opportunities in unified understanding and generation, the development of unified motion-language models remains underexplored. To enable such models with high-fidelity human motion, two core challenges must be addressed. The first is the reconstruction gap between the continuous motion modality and discrete representation in an autoregressive manner, and the second is the degradation of language intelligence during unified training. Inspired by the mixture of experts, we propose MotionGPT3, a bimodal motion-language model that treats human motion as a second modality, decoupling motion modeling via separate model parameters and enabling both effective cross-modal interaction and efficient multimodal scaling training. To preserve language intelligence, the text branch retains the original structure and parameters of the pretrained language model, while a new motion branch is integrated via a shared attention mechanism, enabling bidirectional information flow between two modalities. We first employ a motion Variational Autoencoder (VAE) to encode raw human motion into latent representations. Based on this continuous latent space, the motion branch predicts motion latents directly from intermediate hidden states using a diffusion head, bypassing discrete tokenization. Extensive experiments show that our approach achieves competitive performance on both motion understanding and generation tasks while preserving strong language capabilities, establishing a unified bimodal motion diffusion framework within an autoregressive manner.
Frontier AI developers are relying on layers of safeguards to protect against catastrophic misuse of AI systems. Anthropic guards their latest Claude 4 Opus model using one such defense pipeline, and other frontier developers including Google DeepMind and OpenAI pledge to soon deploy similar defenses. However, the security of such pipelines is unclear, with limited prior work evaluating or attacking these pipelines. We address this gap by developing and red-teaming an open-source defense pipeline. First, we find that a novel few-shot-prompted input and output classifier outperforms state-of-the-art open-weight safeguard model ShieldGemma across three attacks and two datasets, reducing the attack success rate (ASR) to 0% on the catastrophic misuse dataset ClearHarm. Second, we introduce a STaged AttaCK (STACK) procedure that achieves 71% ASR on ClearHarm in a black-box attack against the few-shot-prompted classifier pipeline. Finally, we also evaluate STACK in a transfer setting, achieving 33% ASR, providing initial evidence that it is feasible to design attacks with no access to the target pipeline. We conclude by suggesting specific mitigations that developers could use to thwart staged attacks.
We introduce logit-gap steering, a fast jailbreak framework that casts the refusal-affirmation gap of RLHF-aligned language models as a single pass over the vocabulary. A forward-computable score blends gap reduction with lightweight proxies for KL penalty and reward shift, allowing a "sort-sum-stop" sweep to complete in under a second and return a short suffix--two orders of magnitude fewer model calls than beam or gradient attacks. The same suffix generalises to unseen prompts and scales from 0.5 B to 70 B checkpoints, lifting one-shot attack success from baseline levels to 80-100% while preserving topical coherence. Beyond efficiency, these suffixes expose sentence-boundary reward cliffs and other alignment artefacts, offering a lightweight probe into how safety tuning reshapes internal representations.
We introduce Ella, an embodied social agent capable of lifelong learning within a community in a 3D open world, where agents accumulate experiences and acquire knowledge through everyday visual observations and social interactions. At the core of Ella's capabilities is a structured, long-term multimodal memory system that stores, updates, and retrieves information effectively. It consists of a name-centric semantic memory for organizing acquired knowledge and a spatiotemporal episodic memory for capturing multimodal experiences. By integrating this lifelong memory system with foundation models, Ella retrieves relevant information for decision-making, plans daily activities, builds social relationships, and evolves autonomously while coexisting with other intelligent beings in the open world. We conduct capability-oriented evaluations in a dynamic 3D open world where 15 agents engage in social activities for days and are assessed with a suite of unseen controlled evaluations. Experimental results show that Ella can influence, lead, and cooperate with other agents well to achieve goals, showcasing its ability to learn effectively through observation and social interaction. Our findings highlight the transformative potential of combining structured memory systems with foundation models for advancing embodied intelligence. More videos can be found at https://umass-embodied-agi.github.io/Ella/.
Recent advances in large language models and vision-language models have led to growing interest in explainable evaluation metrics for image captioning. However, these metrics generate explanations without standardized criteria, and the overall quality of the generated explanations remains unverified. In this paper, we propose EXPERT, a reference-free evaluation metric that provides structured explanations based on three fundamental criteria: fluency, relevance, and descriptiveness. By constructing large-scale datasets of high-quality structured explanations, we develop a two-stage evaluation template to effectively supervise a vision-language model for both scoring and explanation generation. EXPERT achieves state-of-the-art results on benchmark datasets while providing significantly higher-quality explanations than existing metrics, as validated through comprehensive human evaluation. Our code and datasets are available at https://github.com/hjkim811/EXPERT.
The progress of Large Language Models (LLMs) like ChatGPT raises the question of how they can be integrated into education. One hope is that they can support mathematics learning, including word-problem solving. Since LLMs can handle textual input with ease, they appear well-suited for solving mathematical word problems. Yet their real competence, whether they can make sense of the real-world context, and the implications for classrooms remain unclear. We conducted a scoping review from a mathematics-education perspective, including three parts: a technical overview, a systematic review of word problems used in research, and a state-of-the-art empirical evaluation of LLMs on mathematical word problems. First, in the technical overview, we contrast the conceptualization of word problems and their solution processes between LLMs and students. In computer-science research this is typically labeled mathematical reasoning, a term that does not align with usage in mathematics education. Second, our literature review of 213 studies shows that the most popular word-problem corpora are dominated by s-problems, which do not require a consideration of realities of their real-world context. Finally, our evaluation of GPT-3.5-turbo, GPT-4o-mini, GPT-4.1, and o3 on 287 word problems shows that most recent LLMs solve these s-problems with near-perfect accuracy, including a perfect score on 20 problems from PISA. LLMs still showed weaknesses in tackling problems where the real-world context is problematic or non-sensical. In sum, we argue based on all three aspects that LLMs have mastered a superficial solution process but do not make sense of word problems, which potentially limits their value as instructional tools in mathematics classrooms.
Congenital heart disease (CHD) presents complex, lifelong challenges often underrepresented in traditional clinical metrics. While unstructured narratives offer rich insights into patient and caregiver experiences, manual thematic analysis (TA) remains labor-intensive and unscalable. We propose a fully automated large language model (LLM) pipeline that performs end-to-end TA on clinical narratives, which eliminates the need for manual coding or full transcript review. Our system employs a novel multi-agent framework, where specialized LLM agents assume roles to enhance theme quality and alignment with human analysis. To further improve thematic relevance, we optionally integrate reinforcement learning from human feedback (RLHF). This supports scalable, patient-centered analysis of large qualitative datasets and allows LLMs to be fine-tuned for specific clinical contexts.
Scientific information expresses human understanding of nature. This knowledge is largely disseminated in different forms of text, including scientific papers, news articles, and discourse among people on social media. While important for accelerating our pursuit of knowledge, not all scientific text is faithful to the underlying science. As the volume of this text has burgeoned online in recent years, it has become a problem of societal importance to be able to identify the faithfulness of a given piece of scientific text automatically. This thesis is concerned with the cultivation of datasets, methods, and tools for machine understanding of scientific language, in order to analyze and understand science communication at scale. To arrive at this, I present several contributions in three areas of natural language processing and machine learning: automatic fact checking, learning with limited data, and scientific text processing. These contributions include new methods and resources for identifying check-worthy claims, adversarial claim generation, multi-source domain adaptation, learning from crowd-sourced labels, cite-worthiness detection, zero-shot scientific fact checking, detecting exaggerated scientific claims, and modeling degrees of information change in science communication. Critically, I demonstrate how the research outputs of this thesis are useful for effectively learning from limited amounts of scientific text in order to identify misinformative scientific statements and generate new insights into the science communication process
Conducting supervised fine-tuning and preference fine-tuning on large language models (LLMs) requires high-quality datasets to improve their ability to follow instructions and align with human preferences and values. However, constructing such datasets is resource-intensive, and most available datasets for supervised and preference fine-tuning are in English. To address these challenges, we propose the \underline{\textbf{Ta}}xonomy-Guided \underline{\textbf{P}}reference Data Generation (TaP) framework, which facilitates automated and scalable construction of preference datasets across various languages. TaP is grounded in a structured taxonomy that allows fine-grained control over dataset composition, thereby ensuring both diversity and comprehensive coverage. We employ TaP-generated datasets to perform supervised and preference fine-tuning on various LLMs. Experimental results demonstrate that LLMs trained on TaP-generated datasets outperform those trained on existing open-source datasets. Remarkably, LLMs trained on TaP-generated datasets surpass the performance of those trained on an open-source dataset that is 180 times larger.
While the Internet's core infrastructure was designed to be open and universal, today's application layer is dominated by closed, proprietary platforms. Open and interoperable APIs require significant investment, and market leaders have little incentive to enable data exchange that could erode their user lock-in. We argue that LLM-based agents fundamentally disrupt this status quo. Agents can automatically translate between data formats and interact with interfaces designed for humans: this makes interoperability dramatically cheaper and effectively unavoidable. We name this shift universal interoperability: the ability for any two digital services to exchange data seamlessly using AI-mediated adapters. Universal interoperability undermines monopolistic behaviours and promotes data portability. However, it can also lead to new security risks and technical debt. Our position is that the ML community should embrace this development while building the appropriate frameworks to mitigate the downsides. By acting now, we can harness AI to restore user freedom and competitive markets without sacrificing security.
Sparse Autoencoders (SAEs) have been successfully used to probe Large Language Models (LLMs) and extract interpretable concepts from their internal representations. These concepts are linear combinations of neuron activations that correspond to human-interpretable features. In this paper, we investigate the effectiveness of SAE-based explainability approaches for sentence classification, a domain where such methods have not been extensively explored. We present a novel SAE-based architecture tailored for text classification, leveraging a specialized classifier head and incorporating an activation rate sparsity loss. We benchmark this architecture against established methods such as ConceptShap, Independent Component Analysis, and other SAE-based concept extraction techniques. Our evaluation covers two classification benchmarks and four fine-tuned LLMs from the Pythia family. We further enrich our analysis with two novel metrics for measuring the precision of concept-based explanations, using an external sentence encoder. Our empirical results show that our architecture improves both the causality and interpretability of the extracted features.
Multimodal Large Language Models (MLLMs) have achieved success across various domains. However, their applicability tends to degrade when confronted with different types of data inputs, especially for MLLMs that have been fine-tuned for specific tasks. Despite its importance, the study of knowledge sharing among domain-specific MLLMs--such as those trained for mathematics or code--remains largely underexplored. To address the fragmentation of knowledge across domain-specialized MLLMs, we propose a unified parameter integration framework that enables modular composition of expert capabilities. Our method is grounded in a novel Compatibility-Aware Parameter Splicing (CAPS) strategy, which leverages both local functional attribution and global information-theoretic signals to guide selective parameter fusion. By extending this mechanism to the low-rank adaptation layer granularity, we ensure efficient integration with minimal inference overhead. Furthermore, we introduce a domain compatibility scoring mechanism that quantifies inter-expert alignment at the activation level and correlates with downstream task utility. This principled fusion protocol allows the final model to synergize heterogeneous expertise while preserving structural modularity. Extensive evaluations across diverse multimodal benchmarks validate the effectiveness of our framework, offering a scalable path toward compositional, domain-adaptive MLLMs.
The rapid expansion of social media leads to a marked increase in hate speech, which threatens personal lives and results in numerous hate crimes. Detecting hate speech presents several challenges: diverse dialects, frequent code-mixing, and the prevalence of misspelled words in user-generated content on social media platforms. Recent progress in hate speech detection is typically concentrated on high-resource languages. However, low-resource languages still face significant challenges due to the lack of large-scale, high-quality datasets. This paper investigates how we can overcome this limitation via prompt engineering on large language models (LLMs) focusing on low-resource Bengali language. We investigate six prompting strategies - zero-shot prompting, refusal suppression, flattering the classifier, multi-shot prompting, role prompting, and finally our innovative metaphor prompting to detect hate speech effectively in low-resource languages. We pioneer the metaphor prompting to circumvent the built-in safety mechanisms of LLMs that marks a significant departure from existing jailbreaking methods. We investigate all six different prompting strategies on the Llama2-7B model and compare the results extensively with three pre-trained word embeddings - GloVe, Word2Vec, and FastText for three different deep learning models - multilayer perceptron (MLP), convolutional neural network (CNN), and bidirectional gated recurrent unit (BiGRU). To prove the effectiveness of our metaphor prompting in the low-resource Bengali language, we also evaluate it in another low-resource language - Hindi, and two high-resource languages - English and German. The performance of all prompting techniques is evaluated using the F1 score, and environmental impact factor (IF), which measures CO$_2$ emissions, electricity usage, and computational time.
Large Language Models (LLMs) have shown significant progress on various multilingual benchmarks and are increasingly used to generate and evaluate text in non-English languages. However, while they may produce fluent outputs, it remains unclear to what extent these models truly grasp the underlying linguistic complexity of those languages, particularly in morphology. To investigate this, we introduce IMPACT, a synthetically generated evaluation framework focused on inflectional morphology, which we publicly release, designed to evaluate LLM performance across five morphologically rich languages: Arabic, Russian, Finnish, Turkish, and Hebrew. IMPACT includes unit-test-style cases covering both shared and language-specific phenomena, from basic verb inflections (e.g., tense, number, gender) to unique features like Arabic's reverse gender agreement and vowel harmony in Finnish and Turkish. We assess eight multilingual LLMs that, despite strong English performance, struggle with other languages and uncommon morphological patterns, especially when judging ungrammatical examples. We also show that Chain of Thought and Thinking Models can degrade performance. Our work exposes gaps in LLMs' handling of linguistic complexity, pointing to clear room for improvement. To support further research, we publicly release the IMPACT framework.
We often attribute human characteristics to large language models (LLMs) and claim that they "know" certain things. LLMs have an internal probabilistic knowledge that represents information retained during training. How can we assess the veracity of this knowledge? We examine two common methods for probing the veracity of LLMs and discover several assumptions that are flawed. To address these flawed assumptions, we introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning), a probing method that utilizes the internal activations of LLMs to separate statements into true, false, and neither. sAwMIL is based on multiple-instance learning and conformal prediction. We evaluate sAwMIL on 5 validity criteria across 16 open-source LLMs, including both default and chat-based variants, as well as on 3 new datasets. Among the insights we provide are: (1) the veracity signal is often concentrated in the third quarter of an LLM's depth; (2) truth and falsehood signals are not always symmetric; (3) linear probes perform better on chat models than on default models; (4) nonlinear probes may be required to capture veracity signals for some LLMs with reinforcement learning from human feedback or knowledge distillation; and (5) LLMs capture a third type of signal that is distinct from true and false and is neither true nor false. These findings provide a reliable method for verifying what LLMs "know" and how certain they are of their probabilistic internal knowledge.