Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Recent deep-thinking large language models often reason extensively to improve performance, but such lengthy reasoning is not always desirable, as it incurs excessive inference costs with disproportionate performance gains. Controlling reasoning length without sacrificing performance is therefore important, but remains challenging, especially under tight thinking budgets. We propose budget guidance, a simple yet effective method for steering the reasoning process of LLMs toward a target budget without requiring any LLM fine-tuning. Our approach introduces a lightweight predictor that models a Gamma distribution over the remaining thinking length during next-token generation. This signal is then used to guide generation in a soft, token-level manner, ensuring that the overall reasoning trace adheres to the specified thinking budget. Budget guidance enables natural control of the thinking length, along with significant token efficiency improvements over baseline methods on challenging math benchmarks. For instance, it achieves up to a 26% accuracy gain on the MATH-500 benchmark under tight budgets compared to baseline methods, while maintaining competitive accuracy with only 63% of the thinking tokens used by the full-thinking model. Budget guidance also generalizes to broader task domains and exhibits emergent capabilities, such as estimating question difficulty. The source code is available at: https://github.com/UMass-Embodied-AGI/BudgetGuidance.
Retrieval-Augmented Generation (RAG) systems typically rely on a single fixed retriever, despite growing evidence that no single retriever performs optimally across all query types. In this paper, we explore a query routing approach that dynamically selects from a pool of retrievers based on the query, using both train-free heuristics and learned routing models. We frame routing as a learning-to-rank (LTR) problem and introduce LTRR, a framework that learns to rank retrievers by their expected utility gain to downstream LLM performance. Our experiments, conducted on synthetic QA data with controlled query type variations, show that routing-based RAG systems can outperform the best single-retriever-based systems. Performance gains are especially pronounced in models trained with the Answer Correctness (AC) metric and with pairwise learning approaches, especially with XGBoost. We also observe improvements in generalization to out-of-distribution queries. As part of the SIGIR 2025 LiveRAG challenge, our submitted system demonstrated the practical viability of our approach, achieving competitive performance in both answer correctness and faithfulness. These findings highlight the importance of both training methodology and metric selection in query routing for RAG systems.
Controlling the generation of large language models (LLMs) remains a central challenge to ensure their safe and reliable deployment. While prompt engineering and finetuning are common approaches, recent work has explored latent steering, a lightweight technique that alters LLM internal activations to guide generation. However, subsequent studies revealed latent steering's effectiveness to be limited, often underperforming simple instruction prompting. To address this limitation, we first establish a benchmark across diverse behaviors for standardized evaluation of steering techniques. Building on insights from this benchmark, we introduce Instruction Attention Boosting (InstABoost), a latent steering method that boosts the strength of instruction prompting by altering the model's attention during generation. InstABoost combines the strengths of existing approaches and is theoretically supported by prior work that suggests that in-context rule following in transformer-based models can be controlled by manipulating attention on instructions. Empirically, InstABoost demonstrates superior control success compared to both traditional prompting and latent steering.
Large Language Models (LLMs) are central to many contemporary AI applications, yet their extensive parameter counts pose significant challenges for deployment in memory- and compute-constrained environments. Recent works in eXplainable AI (XAI), particularly on attribution methods, suggest that interpretability can also enable model compression by identifying and removing components irrelevant to inference. In this paper, we leverage Layer-wise Relevance Propagation (LRP) to perform attribution-guided pruning of LLMs. While LRP has shown promise in structured pruning for vision models, we extend it to unstructured pruning in LLMs and demonstrate that it can substantially reduce model size with minimal performance loss. Our method is especially effective in extracting task-relevant subgraphs -- so-called ``circuits'' -- which can represent core functions (e.g., indirect object identification). Building on this, we introduce a technique for model correction, by selectively removing circuits responsible for spurious behaviors (e.g., toxic outputs). All in all, we gather these techniques as a uniform holistic framework and showcase its effectiveness and limitations through extensive experiments for compression, circuit discovery and model correction on Llama and OPT models, highlighting its potential for improving both model efficiency and safety. Our code is publicly available at https://github.com/erfanhatefi/SparC3.
With the advancement of large language models, many dialogue systems are now capable of providing reasonable and informative responses to patients' medical conditions. However, when patients consult their doctor, they may experience negative emotions due to the severity and urgency of their situation. If the model can provide appropriate comfort and empathy based on the patient's negative emotions while answering medical questions, it will likely offer a more reassuring experience during the medical consultation process. To address this issue, our paper explores the balance between knowledge sharing and emotional support in the healthcare dialogue process. We utilize a large language model to rewrite a real-world interactive medical dialogue dataset, generating patient queries with negative emotions and corresponding medical responses aimed at soothing the patient's emotions while addressing their concerns. The modified data serves to refine the latest large language models with various fine-tuning methods, enabling them to accurately provide sentences with both emotional reassurance and constructive suggestions in response to patients' questions. Compared to the original LLM model, our experimental results demonstrate that our methodology significantly enhances the model's ability to generate emotional responses while maintaining its original capability to provide accurate knowledge-based answers.
Sampling from language models impacts the quality and diversity of outputs, affecting both research and real-world applications. Recently, Nguyen et al. 2024's "Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs" introduced a new sampler called min-p, claiming it achieves superior quality and diversity over established samplers such as basic, top-k, and top-p sampling. The significance of these claims was underscored by the paper's recognition as the 18th highest-scoring submission to ICLR 2025 and selection for an Oral presentation. This paper conducts a comprehensive re-examination of the evidence supporting min-p and reaches different conclusions from the original paper's four lines of evidence. First, the original paper's human evaluations omitted data, conducted statistical tests incorrectly, and described qualitative feedback inaccurately; our reanalysis demonstrates min-p did not outperform baselines in quality, diversity, or a trade-off between quality and diversity; in response to our findings, the authors of the original paper conducted a new human evaluation using a different implementation, task, and rubric that nevertheless provides further evidence min-p does not improve over baselines. Second, comprehensively sweeping the original paper's NLP benchmarks reveals min-p does not surpass baselines when controlling for the number of hyperparameters. Third, the original paper's LLM-as-a-Judge evaluations lack methodological clarity and appear inconsistently reported. Fourth, community adoption claims (49k GitHub repositories, 1.1M GitHub stars) were found to be unsubstantiated, leading to their removal; the revised adoption claim remains misleading. We conclude that evidence presented in the original paper fails to support claims that min-p improves quality, diversity, or a trade-off between quality and diversity.
Parameter-Efficient Fine-Tuning (PEFT) methods have become crucial for rapidly adapting large language models (LLMs) to downstream tasks. Prefix-Tuning, an early and effective PEFT technique, demonstrated the ability to achieve performance comparable to full fine-tuning with significantly reduced computational and memory overhead. However, despite its earlier success, its effectiveness in training modern state-of-the-art LLMs has been very limited. In this work, we demonstrate empirically that Prefix-Tuning underperforms on LLMs because of an inherent tradeoff between input and prefix significance within the attention head. This motivates us to introduce Prefix-Tuning+, a novel architecture that generalizes the principles of Prefix-Tuning while addressing its shortcomings by shifting the prefix module out of the attention head itself. We further provide an overview of our construction process to guide future users when constructing their own context-based methods. Our experiments show that, across a diverse set of benchmarks, Prefix-Tuning+ consistently outperforms existing Prefix-Tuning methods. Notably, it achieves performance on par with the widely adopted LoRA method on several general benchmarks, highlighting the potential modern extension of Prefix-Tuning approaches. Our findings suggest that by overcoming its inherent limitations, Prefix-Tuning can remain a competitive and relevant research direction in the landscape of parameter-efficient LLM adaptation.
The emergence of GPT-4o-like large multimodal models (LMMs) has raised the exploration of integrating text, vision, and speech modalities to support more flexible multimodal interaction. Existing LMMs typically concatenate representation of modalities along the sequence dimension and feed them into a large language model (LLM) backbone. While sequence-dimension concatenation is straightforward for modality integration, it often relies heavily on large-scale data to learn modality alignments. In this paper, we aim to model the relationships between modalities more purposefully, thereby achieving more efficient and flexible modality alignments. To this end, we propose Stream-Omni, a large language-vision-speech model with efficient modality alignments, which can simultaneously support interactions under various modality combinations. Stream-Omni employs LLM as the backbone and aligns the vision and speech to the text based on their relationships. For vision that is semantically complementary to text, Stream-Omni uses sequence-dimension concatenation to achieve vision-text alignment. For speech that is semantically consistent with text, Stream-Omni introduces a CTC-based layer-dimension mapping to achieve speech-text alignment. In this way, Stream-Omni can achieve modality alignments with less data (especially speech), enabling the transfer of text capabilities to other modalities. Experiments on various benchmarks demonstrate that Stream-Omni achieves strong performance on visual understanding, speech interaction, and vision-grounded speech interaction tasks. Owing to the layer-dimensional mapping, Stream-Omni can simultaneously provide intermediate text outputs (such as ASR transcriptions and model responses) during speech interaction, offering users a comprehensive multimodal experience.
A compelling portrayal of characters is essential to the success of narrative writing. For readers, appreciating a character's traits requires the ability to infer their evolving beliefs, desires, and intentions over the course of a complex storyline, a cognitive skill known as Theory-of-Mind (ToM). Performing ToM reasoning in prolonged narratives requires readers to integrate historical context with current narrative information, a task at which humans excel but Large Language Models (LLMs) often struggle. To systematically evaluate LLMs' ToM reasoning capability in long narratives, we construct LitCharToM, a benchmark of character-centric questions across four ToM dimensions from classic literature. Further, we introduce EvolvTrip, a perspective-aware temporal knowledge graph that tracks psychological development throughout narratives. Our experiments demonstrate that EvolvTrip consistently enhances performance of LLMs across varying scales, even in challenging extended-context scenarios. EvolvTrip proves to be particularly valuable for smaller models, partially bridging the performance gap with larger LLMs and showing great compatibility with lengthy narratives. Our findings highlight the importance of explicit representation of temporal character mental states in narrative comprehension and offer a foundation for more sophisticated character understanding. Our data and code are publicly available at https://github.com/Bernard-Yang/EvolvTrip.
As large language models (LLMs) continue to advance, reliable evaluation methods are essential particularly for open-ended, instruction-following tasks. LLM-as-a-Judge enables automatic evaluation using LLMs as evaluators, but its reliability remains uncertain. In this work, we analyze key factors affecting its trustworthiness, focusing on alignment with human judgments and evaluation consistency. Using BIGGENBench and EvalBiasBench, we study the effects of evaluation design, decoding strategies, and Chain-of-Tought (CoT) reasoning in evaluation. Our results show that evaluation criteria are critical for reliability, non-deterministic sampling improves alignment with human preferences over deterministic evaluation, and CoT reasoning offers minimal gains when clear evaluation criteria are present.
Disease-symptom datasets are significant and in demand for medical research, disease diagnosis, clinical decision-making, and AI-driven health management applications. These datasets help identify symptom patterns associated with specific diseases, thus improving diagnostic accuracy and enabling early detection. The dataset presented in this study systematically compiles disease-symptom relationships from various online sources, medical literature, and publicly available health databases. The data was gathered through analyzing peer-reviewed medical articles, clinical case studies, and disease-symptom association reports. Only the verified medical sources were included in the dataset, while those from non-peer-reviewed and anecdotal sources were excluded. The dataset is structured in a tabular format, where the first column represents diseases, and the remaining columns represent symptoms. Each symptom cell contains a binary value (1 or 0), indicating whether a symptom is associated with a disease (1 for presence, 0 for absence). Thereby, this structured representation makes the dataset very useful for a wide range of applications, including machine learning-based disease prediction, clinical decision support systems, and epidemiological studies. Although there are some advancements in the field of disease-symptom datasets, there is a significant gap in structured datasets for the Bangla language. This dataset aims to bridge that gap by facilitating the development of multilingual medical informatics tools and improving disease prediction models for underrepresented linguistic communities. Further developments should include region-specific diseases and further fine-tuning of symptom associations for better diagnostic performance
Human mobility simulation plays a crucial role in various real-world applications. Recently, to address the limitations of traditional data-driven approaches, researchers have explored leveraging the commonsense knowledge and reasoning capabilities of large language models (LLMs) to accelerate human mobility simulation. However, these methods suffer from several critical shortcomings, including inadequate modeling of urban spaces and poor integration with both individual mobility patterns and collective mobility distributions. To address these challenges, we propose \textbf{C}ityGPT-Powered \textbf{A}gentic framework for \textbf{M}obility \textbf{S}imulation (\textbf{CAMS}), an agentic framework that leverages the language based urban foundation model to simulate human mobility in urban space. \textbf{CAMS} comprises three core modules, including MobExtractor to extract template mobility patterns and synthesize new ones based on user profiles, GeoGenerator to generate anchor points considering collective knowledge and generate candidate urban geospatial knowledge using an enhanced version of CityGPT, TrajEnhancer to retrieve spatial knowledge based on mobility patterns and generate trajectories with real trajectory preference alignment via DPO. Experiments on real-world datasets show that \textbf{CAMS} achieves superior performance without relying on externally provided geospatial information. Moreover, by holistically modeling both individual mobility patterns and collective mobility constraints, \textbf{CAMS} generates more realistic and plausible trajectories. In general, \textbf{CAMS} establishes a new paradigm that integrates the agentic framework with urban-knowledgeable LLMs for human mobility simulation.
This paper presents our system for the MLC-SLM Challenge 2025, focusing on multilingual speech recognition and language modeling with large language models (LLMs). Our approach combines a fine-tuned Whisper-large-v3 encoder with efficient projector architectures and various decoder configurations. We employ a three-stage training methodology that progressively optimizes the encoder, projector, and LLM components. Our system achieves competitive performance with a private test average WER/CER result of 16.63% using the Gemma3-12B and 18.6% using the Qwen2.5-7B as decoder-only language model.
We introduce MiniMax-M1, the world's first open-weight, large-scale hybrid-attention reasoning model. MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning attention mechanism. The model is developed based on our previous MiniMax-Text-01 model, which contains a total of 456 billion parameters with 45.9 billion parameters activated per token. The M1 model natively supports a context length of 1 million tokens, 8x the context size of DeepSeek R1. Furthermore, the lightning attention mechanism in MiniMax-M1 enables efficient scaling of test-time compute. These properties make M1 particularly suitable for complex tasks that require processing long inputs and thinking extensively. MiniMax-M1 is trained using large-scale reinforcement learning (RL) on diverse problems including sandbox-based, real-world software engineering environments. In addition to M1's inherent efficiency advantage for RL training, we propose CISPO, a novel RL algorithm to further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates, outperforming other competitive RL variants. Combining hybrid-attention and CISPO enables MiniMax-M1's full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just $534,700. We release two versions of MiniMax-M1 models with 40K and 80K thinking budgets respectively, where the 40K model represents an intermediate phase of the 80K training. Experiments on standard benchmarks show that our models are comparable or superior to strong open-weight models such as the original DeepSeek-R1 and Qwen3-235B, with particular strengths in complex software engineering, tool utilization, and long-context tasks. We publicly release MiniMax-M1 at https://github.com/MiniMax-AI/MiniMax-M1.
Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce \textbf{DDOT} (\textbf{D}iscrete \textbf{D}iffusion with \textbf{O}ptimal \textbf{T}ransport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
Measuring how semantics of words change over time improves our understanding of how cultures and perspectives change. Diachronic word embeddings help us quantify this shift, although previous studies leveraged substantial temporally annotated corpora. In this work, we use a corpus of 9.5 million Croatian news articles spanning the past 25 years and quantify semantic change using skip-gram word embeddings trained on five-year periods. Our analysis finds that word embeddings capture linguistic shifts of terms pertaining to major topics in this timespan (COVID-19, Croatia joining the European Union, technological advancements). We also find evidence that embeddings from post-2020 encode increased positivity in sentiment analysis tasks, contrasting studies reporting a decline in mental health over the same period.
Pragmatics, the ability to infer meaning beyond literal interpretation, is crucial for social cognition and communication. While LLMs have been benchmarked for their pragmatic understanding, improving their performance remains underexplored. Existing methods rely on annotated labels but overlook the reasoning process humans naturally use to interpret implicit meaning. To bridge this gap, we introduce a novel pragmatic dataset, ImpliedMeaningPreference, that includes explicit reasoning (thoughts) for both correct and incorrect interpretations. Through preference-tuning and supervised fine-tuning, we demonstrate that thought-based learning significantly enhances LLMs' pragmatic understanding, improving accuracy by 11.12% across model families. We further discuss a transfer-learning study where we evaluate the performance of thought-based training for the other tasks of pragmatics (presupposition, deixis) that are not seen during the training time and observe an improvement of 16.10% compared to label-trained models.
Transformer models face scalability challenges in causal language modeling (CLM) due to inefficient memory allocation for growing key-value (KV) caches, which strains compute and storage resources. Existing methods like Grouped Query Attention (GQA) and token-level KV optimization improve efficiency but rely on rigid resource allocation, often discarding "low-priority" tokens or statically grouping them, failing to address the dynamic spectrum of token importance. We propose mixSGA, a novel mixture-of-expert (MoE) approach that dynamically optimizes token-wise computation and memory allocation. Unlike prior approaches, mixSGA retains all tokens while adaptively routing them to specialized experts with varying KV group sizes, balancing granularity and efficiency. Our key novelties include: (1) a token-wise expert-choice routing mechanism guided by learned importance scores, enabling proportional resource allocation without token discard; (2) weight-sharing across grouped attention projections to minimize parameter overhead; and (3) an auxiliary loss to ensure one-hot routing decisions for training-inference consistency in CLMs. Extensive evaluations across Llama3, TinyLlama, OPT, and Gemma2 model families show mixSGA's superiority over static baselines. On instruction-following and continued pretraining tasks, mixSGA achieves higher ROUGE-L and lower perplexity under the same KV budgets.