Multi-Modal Embedding-based Target Speaker Enhancement
Abstract
Target Speaker Extraction (TSE) is a critical challenge in cocktail party scenarios. While leveraging multiple modalities, such as voice, lip, face, and expression embeddings, can enhance performance, real-world applications often suffer from intermittent modality dropout. This paper presents a comprehensive study on the interactions and robustness of various multimodal fusion strategies under varying degrees of modality dropout. We build upon a state-of-the-art audio-visual speech enhancement system and integrate four distinct speaker identity cues: lip embeddings for synchronized contextual information, a voice speaker embedding extracted via cross-attention for acoustic consistency, a static face embedding for speaker identity, and a novel dynamic expression embedding for frame-wise emotional features. We systematically evaluate different combinations of these modalities under two key training regimes: zero dropout and 80% modality dropout. Extensive experiments demonstrate that while a full multimodal ensemble achieves optimal performance under ideal (zero dropout) conditions, its effectiveness diminishes significantly when test-time dropout occurs without prior exposure during training. Crucially, we show that training with a high (80%) modality dropout rate dramatically enhances model robustness, enabling the system to maintain superior performance even under severe test-time missing modalities. Our findings highlight that voice embeddings exhibit consistent robustness, while the proposed expression embedding provides valuable complementary information. This work underscores the importance of training strategies that account for real-world imperfection, moving beyond pure performance maximization to achieve practical reliability in multimodal speech enhancement systems.