Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Camera traps are revolutionising wildlife monitoring by capturing vast amounts of visual data; however, the manual identification of individual animals remains a significant bottleneck. This study introduces a fully self-supervised approach to learning robust chimpanzee face embeddings from unlabeled camera-trap footage. Leveraging the DINOv2 framework, we train Vision Transformers on automatically mined face crops, eliminating the need for identity labels. Our method demonstrates strong open-set re-identification performance, surpassing supervised baselines on challenging benchmarks such as Bossou, despite utilising no labelled data during training. This work underscores the potential of self-supervised learning in biodiversity monitoring and paves the way for scalable, non-invasive population studies.
Recent advanced vision-language models(VLMs) have demonstrated strong performance on passive, offline image and video understanding tasks. However, their effectiveness in embodied settings, which require online interaction and active scene understanding remains limited. In such scenarios, an agent perceives the environment from a first-person perspective, with each action dynamically shaping subsequent observations. Even state-of-the-art models such as GPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro struggle in open-environment interactions, exhibiting clear limitations in spatial reasoning and long-horizon planning. To address this gap, we introduce EmRACE-3K, a dataset of over 3,000 language-guided tasks situated in diverse, photorealistic environments constructed using Unreal Engine and the UnrealCV-Zoo framework. The tasks encompass a wide range of embodied challenges, including navigation, object manipulation, and multi-stage goal execution. Each task unfolds as a multi-step trajectory, pairing first-person visual observations with high-level instructions, grounded actions, and natural language rationales that express the agent's intent at every step. Using EmRACE-3K, we establish a benchmark to evaluate the embodied reasoning capabilities of VLMs across three key dimensions: Exploration, Dynamic Spatial-Semantic Reasoning, and Multi-stage Goal Execution. In zero-shot settings, all models achieve success rates below 20%, underscoring the challenge posed by our benchmark and the current limitations of VLMs in interactive environments. To demonstrate the utility of EmRACE-3K, we further fine-tune Qwen2.5-VL-7B using supervised learning followed by reinforcement learning. This approach yields substantial improvements across all three challenge categories, highlighting the dataset's effectiveness in enabling the development of embodied reasoning capabilities.
Visual tokenizers are pivotal in multimodal large models, acting as bridges between continuous inputs and discrete tokens. Nevertheless, training high-compression-rate VQ-VAEs remains computationally demanding, often necessitating thousands of GPU hours. This work demonstrates that a pre-trained VAE can be efficiently transformed into a VQ-VAE by controlling quantization noise within the VAE's tolerance threshold. We present \textbf{Quantize-then-Rectify (ReVQ)}, a framework leveraging pre-trained VAEs to enable rapid VQ-VAE training with minimal computational overhead. By integrating \textbf{channel multi-group quantization} to enlarge codebook capacity and a \textbf{post rectifier} to mitigate quantization errors, ReVQ compresses ImageNet images into at most 512 tokens while sustaining competitive reconstruction quality (rFID = 1.06). Significantly, ReVQ reduces training costs by over two orders of magnitude relative to state-of-the-art approaches: ReVQ finishes full training on a single NVIDIA 4090 in approximately 22 hours, whereas comparable methods require 4.5 days on 32 A100 GPUs. Experimental results show that ReVQ achieves superior efficiency-reconstruction trade-offs.
Generating high-fidelity real-time animated sequences of photorealistic 3D head avatars is important for many graphics applications, including immersive telepresence and movies. This is a challenging problem particularly when rendering digital avatar close-ups for showing character's facial microfeatures and expressions. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple locally-defined facial expressions with 3D Gaussian splatting to enable creating ultra-high fidelity, expressive and photorealistic 3D head avatars. In contrast to previous works that operate on a global expression space, we condition our avatar's dynamics on patch-based local expression features and synthesize 3D Gaussians at a patch level. In particular, we leverage a patch-based geometric 3D face model to extract patch expressions and learn how to translate these into local dynamic skin appearance and motion by coupling the patches with anchor points of Scaffold-GS, a recent hierarchical scene representation. These anchors are then used to synthesize 3D Gaussians on-the-fly, conditioned by patch-expressions and viewing direction. We employ color-based densification and progressive training to obtain high-quality results and faster convergence for high resolution 3K training images. By leveraging patch-level expressions, ScaffoldAvatar consistently achieves state-of-the-art performance with visually natural motion, while encompassing diverse facial expressions and styles in real time.
While autonomous driving technologies continue to advance, current Advanced Driver Assistance Systems (ADAS) remain limited in their ability to interpret scene context or engage with drivers through natural language. These systems typically rely on predefined logic and lack support for dialogue-based interaction, making them inflexible in dynamic environments or when adapting to driver intent. This paper presents Scene-Aware Conversational ADAS (SC-ADAS), a modular framework that integrates Generative AI components including large language models, vision-to-text interpretation, and structured function calling to enable real-time, interpretable, and adaptive driver assistance. SC-ADAS supports multi-turn dialogue grounded in visual and sensor context, allowing natural language recommendations and driver-confirmed ADAS control. Implemented in the CARLA simulator with cloud-based Generative AI, the system executes confirmed user intents as structured ADAS commands without requiring model fine-tuning. We evaluate SC-ADAS across scene-aware, conversational, and revisited multi-turn interactions, highlighting trade-offs such as increased latency from vision-based context retrieval and token growth from accumulated dialogue history. These results demonstrate the feasibility of combining conversational reasoning, scene perception, and modular ADAS control to support the next generation of intelligent driver assistance.
The design of science-based policies to improve the sustainability of smallholder agriculture is challenged by a limited understanding of fundamental system properties, such as the spatial distribution of active cropland and field size. We integrate very high spatial resolution (1.5 m) Earth observation data and deep transfer learning to derive crop field delineations in complex agricultural systems at the national scale, while maintaining minimum reference data requirements and enhancing transferability. We provide the first national-level dataset of 21 million individual fields for Mozambique (covering ~800,000 km2) for 2023. Our maps separate active cropland from non-agricultural land use with an overall accuracy of 93% and balanced omission and commission errors. Field-level spatial agreement reached median intersection over union (IoU) scores of 0.81, advancing the state-of-the-art in large-area field delineation in complex smallholder systems. The active cropland maps capture fragmented rural regions with low cropland shares not yet identified in global land cover or cropland maps. These regions are mostly located in agricultural frontier regions which host 7-9% of the Mozambican population. Field size in Mozambique is very low overall, with half of the fields being smaller than 0.16 ha, and 83% smaller than 0.5 ha. Mean field size at aggregate spatial resolution (0.05{\deg}) is 0.32 ha, but it varies strongly across gradients of accessibility, population density, and net forest cover change. This variation reflects a diverse set of actors, ranging from semi-subsistence smallholder farms to medium-scale commercial farming, and large-scale farming operations. Our results highlight that field size is a key indicator relating to socio-economic and environmental outcomes of agriculture (e.g., food production, livelihoods, deforestation, biodiversity), as well as their trade-offs.
Transformers are increasingly prevalent for multi-view computer vision tasks, where geometric relationships between viewpoints are critical for 3D perception. To leverage these relationships, multi-view transformers must use camera geometry to ground visual tokens in 3D space. In this work, we compare techniques for conditioning transformers on cameras: token-level raymap encodings, attention-level relative pose encodings, and a new relative encoding we propose -- Projective Positional Encoding (PRoPE) -- that captures complete camera frustums, both intrinsics and extrinsics, as a relative positional encoding. Our experiments begin by showing how relative camera conditioning improves performance in feedforward novel view synthesis, with further gains from PRoPE. This holds across settings: scenes with both shared and varying intrinsics, when combining token- and attention-level conditioning, and for generalization to inputs with out-of-distribution sequence lengths and camera intrinsics. We then verify that these benefits persist for different tasks, stereo depth estimation and discriminative spatial cognition, as well as larger model sizes.
Retinal anomaly detection plays a pivotal role in screening ocular and systemic diseases. Despite its significance, progress in the field has been hindered by the absence of a comprehensive and publicly available benchmark, which is essential for the fair evaluation and advancement of methodologies. Due to this limitation, previous anomaly detection work related to retinal images has been constrained by (1) a limited and overly simplistic set of anomaly types, (2) test sets that are nearly saturated, and (3) a lack of generalization evaluation, resulting in less convincing experimental setups. Furthermore, existing benchmarks in medical anomaly detection predominantly focus on one-class supervised approaches (training only with negative samples), overlooking the vast amounts of labeled abnormal data and unlabeled data that are commonly available in clinical practice. To bridge these gaps, we introduce a benchmark for retinal anomaly detection, which is comprehensive and systematic in terms of data and algorithm. Through categorizing and benchmarking previous methods, we find that a fully supervised approach leveraging disentangled representations of abnormalities (DRA) achieves the best performance but suffers from significant drops in performance when encountering certain unseen anomalies. Inspired by the memory bank mechanisms in one-class supervised learning, we propose NFM-DRA, which integrates DRA with a Normal Feature Memory to mitigate the performance degradation, establishing a new SOTA. The benchmark is publicly available at https://github.com/DopamineLcy/BenchReAD.
Deep learning models have been proposed for automatic polyp detection and precise segmentation of polyps during colonoscopy procedures. Although these state-of-the-art models achieve high performance, they often require a large number of parameters. Their complexity can make them prone to overfitting, particularly when trained on biased datasets, and can result in poor generalization across diverse datasets. Knowledge distillation and self-distillation are proposed as promising strategies to mitigate the limitations of large, over-parameterized models. These approaches, however, are resource-intensive, often requiring multiple models and significant memory during training. We propose a confidence-based self-distillation approach that outperforms state-of-the-art models by utilizing only previous iteration data storage during training, without requiring extra computation or memory usage during testing. Our approach calculates the loss between the previous and current iterations within a batch using a dynamic confidence coefficient. To evaluate the effectiveness of our approach, we conduct comprehensive experiments on the task of polyp segmentation. Our approach outperforms state-of-the-art models and generalizes well across datasets collected from multiple clinical centers. The code will be released to the public once the paper is accepted.
The aging population is growing rapidly, and so is the danger of falls in older adults. A major cause of injury is falling, and detection in time can greatly save medical expenses and recovery time. However, to provide timely intervention and avoid unnecessary alarms, detection systems must be effective and reliable while addressing privacy concerns regarding the user. In this work, we propose a framework for detecting falls using several complementary systems: a semi-supervised federated learning-based fall detection system (SF2D), an indoor localization and navigation system, and a vision-based human fall recognition system. A wearable device and an edge device identify a fall scenario in the first system. On top of that, the second system uses an indoor localization technique first to localize the fall location and then navigate a robot to inspect the scenario. A vision-based detection system running on an edge device with a mounted camera on a robot is used to recognize fallen people. Each of the systems of this proposed framework achieves different accuracy rates. Specifically, the SF2D has a 0.81% failure rate equivalent to 99.19% accuracy, while the vision-based fallen people detection achieves 96.3% accuracy. However, when we combine the accuracy of these two systems with the accuracy of the navigation system (95% success rate), our proposed framework creates a highly reliable performance for fall detection, with an overall accuracy of 99.99%. Not only is the proposed framework safe for older adults, but it is also a privacy-preserving solution for detecting falls.
Timestamp prediction aims to determine when an image was captured using only visual information, supporting applications such as metadata correction, retrieval, and digital forensics. In outdoor scenarios, hourly estimates rely on cues like brightness, hue, and shadow positioning, while seasonal changes and weather inform date estimation. However, these visual cues significantly depend on geographic context, closely linking timestamp prediction to geo-localization. To address this interdependence, we introduce GT-Loc, a novel retrieval-based method that jointly predicts the capture time (hour and month) and geo-location (GPS coordinates) of an image. Our approach employs separate encoders for images, time, and location, aligning their embeddings within a shared high-dimensional feature space. Recognizing the cyclical nature of time, instead of conventional contrastive learning with hard positives and negatives, we propose a temporal metric-learning objective providing soft targets by modeling pairwise time differences over a cyclical toroidal surface. We present new benchmarks demonstrating that our joint optimization surpasses previous time prediction methods, even those using the ground-truth geo-location as an input during inference. Additionally, our approach achieves competitive results on standard geo-localization tasks, and the unified embedding space facilitates compositional and text-based image retrieval.
Blind facial image restoration is highly challenging due to unknown complex degradations and the sensitivity of humans to faces. Although existing methods introduce auxiliary information from generative priors or high-quality reference images, they still struggle with identity preservation problems, mainly due to improper feature introduction on detailed textures. In this paper, we focus on effectively incorporating appropriate features from high-quality reference images, presenting a novel blind facial image restoration method that considers reference selection, transfer, and reconstruction (RefSTAR). In terms of selection, we construct a reference selection (RefSel) module. For training the RefSel module, we construct a RefSel-HQ dataset through a mask generation pipeline, which contains annotating masks for 10,000 ground truth-reference pairs. As for the transfer, due to the trivial solution in vanilla cross-attention operations, a feature fusion paradigm is designed to force the features from the reference to be integrated. Finally, we propose a reference image reconstruction mechanism that further ensures the presence of reference image features in the output image. The cycle consistency loss is also redesigned in conjunction with the mask. Extensive experiments on various backbone models demonstrate superior performance, showing better identity preservation ability and reference feature transfer quality. Source code, dataset, and pre-trained models are available at https://github.com/yinzhicun/RefSTAR.
Pansharpening refers to the process of integrating a high resolution panchromatic (PAN) image with a lower resolution multispectral (MS) image to generate a fused product, which is pivotal in remote sensing. Despite the effectiveness of CNNs in addressing this challenge, they are inherently constrained by the uniform application of convolutional kernels across all spatial positions, overlooking local content variations. To overcome this issue, we introduce RAPNet, a new architecture that leverages content-adaptive convolution. At its core, RAPNet employs the Receptive-field Adaptive Pansharpening Convolution (RAPConv), designed to produce spatially adaptive kernels responsive to local feature context, thereby enhancing the precision of spatial detail extraction. Additionally, the network integrates the Pansharpening Dynamic Feature Fusion (PAN-DFF) module, which incorporates an attention mechanism to achieve an optimal balance between spatial detail enhancement and spectral fidelity. Comprehensive evaluations on publicly available datasets confirm that RAPNet delivers superior performance compared to existing approaches, as demonstrated by both quantitative metrics and qualitative assessments. Ablation analyses further substantiate the effectiveness of the proposed adaptive components.
Coral reefs are vital yet vulnerable ecosystems that require continuous monitoring to support conservation. While coral reef images provide essential information in coral monitoring, interpreting such images remains challenging due to the need for domain expertise. Visual Question Answering (VQA), powered by Large Vision-Language Models (LVLMs), has great potential in user-friendly interaction with coral reef images. However, applying VQA to coral imagery demands a dedicated dataset that addresses two key challenges: domain-specific annotations and multidimensional questions. In this work, we introduce CoralVQA, the first large-scale VQA dataset for coral reef analysis. It contains 12,805 real-world coral images from 67 coral genera collected from 3 oceans, along with 277,653 question-answer pairs that comprehensively assess ecological and health-related conditions. To construct this dataset, we develop a semi-automatic data construction pipeline in collaboration with marine biologists to ensure both scalability and professional-grade data quality. CoralVQA presents novel challenges and provides a comprehensive benchmark for studying vision-language reasoning in the context of coral reef images. By evaluating several state-of-the-art LVLMs, we reveal key limitations and opportunities. These insights form a foundation for future LVLM development, with a particular emphasis on supporting coral conservation efforts.
Existing methods for reconstructing animatable 3D animals from videos typically rely on sparse semantic keypoints to fit parametric models. However, obtaining such keypoints is labor-intensive, and keypoint detectors trained on limited animal data are often unreliable. To address this, we propose 4D-Animal, a novel framework that reconstructs animatable 3D animals from videos without requiring sparse keypoint annotations. Our approach introduces a dense feature network that maps 2D representations to SMAL parameters, enhancing both the efficiency and stability of the fitting process. Furthermore, we develop a hierarchical alignment strategy that integrates silhouette, part-level, pixel-level, and temporal cues from pre-trained 2D visual models to produce accurate and temporally coherent reconstructions across frames. Extensive experiments demonstrate that 4D-Animal outperforms both model-based and model-free baselines. Moreover, the high-quality 3D assets generated by our method can benefit other 3D tasks, underscoring its potential for large-scale applications. The code is released at https://github.com/zhongshsh/4D-Animal.
Self-supervised learning (SSL) is able to build latent representations that generalize well to unseen data. However, only a few SSL techniques exist for the online CL setting, where data arrives in small minibatches, the model must comply with a fixed computational budget, and task boundaries are absent. We introduce Continual Latent Alignment (CLA), a novel SSL strategy for Online CL that aligns the representations learned by the current model with past representations to mitigate forgetting. We found that our CLA is able to speed up the convergence of the training process in the online scenario, outperforming state-of-the-art approaches under the same computational budget. Surprisingly, we also discovered that using CLA as a pretraining protocol in the early stages of pretraining leads to a better final performance when compared to a full i.i.d. pretraining.
With the rapid advancements in Artificial Intelligence Generated Image (AGI) technology, the accurate assessment of their quality has become an increasingly vital requirement. Prevailing methods typically rely on cross-modal models like CLIP or BLIP to evaluate text-image alignment and visual quality. However, when applied to AGIs, these methods encounter two primary challenges: semantic misalignment and details perception missing. To address these limitations, we propose Text-Visual Semantic Constrained AI-Generated Image Quality Assessment (SC-AGIQA), a unified framework that leverages text-visual semantic constraints to significantly enhance the comprehensive evaluation of both text-image consistency and perceptual distortion in AI-generated images. Our approach integrates key capabilities from multiple models and tackles the aforementioned challenges by introducing two core modules: the Text-assisted Semantic Alignment Module (TSAM), which leverages Multimodal Large Language Models (MLLMs) to bridge the semantic gap by generating an image description and comparing it against the original prompt for a refined consistency check, and the Frequency-domain Fine-Grained Degradation Perception Module (FFDPM), which draws inspiration from Human Visual System (HVS) properties by employing frequency domain analysis combined with perceptual sensitivity weighting to better quantify subtle visual distortions and enhance the capture of fine-grained visual quality details in images. Extensive experiments conducted on multiple benchmark datasets demonstrate that SC-AGIQA outperforms existing state-of-the-art methods. The code is publicly available at https://github.com/mozhu1/SC-AGIQA.
I discuss a seemingly unlikely confluence of topics in algebra, numerical computation, and computer vision. The motivating problem is that of solving multiples instances of a parametric family of systems of algebraic (polynomial or rational function) equations. No doubt already of interest to ISSAC attendees, this problem arises in the context of robust model-fitting paradigms currently utilized by the computer vision community (namely "Random Sampling and Consensus", aka "RanSaC".) This talk will give an overview of work in the last 5+ years that aspires to measure the intrinsic difficulty of solving such parametric systems, and makes strides towards practical solutions.