Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Biological systems, such as the octopus, exhibit masterful cross-scale manipulation by adaptively reconfiguring their entire form, a capability that remains elusive in robotics. Conventional soft grippers, while compliant, are mostly constrained by a fixed global morphology, and prior shape-morphing efforts have been largely confined to localized deformations, failing to replicate this biological dexterity. Inspired by this natural exemplar, we introduce the paradigm of collaborative, whole-body proprioceptive morphing, realized in a modular soft gripper architecture. Our design is a distributed network of modular self-sensing pneumatic actuators that enables the gripper to intelligently reconfigure its entire topology, achieving multiple morphing states that are controllable to form diverse polygonal shapes. By integrating rich proprioceptive feedback from embedded sensors, our system can seamlessly transition from a precise pinch to a large envelope grasp. We experimentally demonstrate that this approach expands the grasping envelope and enhances generalization across diverse object geometries (standard and irregular) and scales (up to 10$\times$), while also unlocking novel manipulation modalities such as multi-object and internal hook grasping. This work presents a low-cost, easy-to-fabricate, and scalable framework that fuses distributed actuation with integrated sensing, offering a new pathway toward achieving biological levels of dexterity in robotic manipulation.
Recently, augmenting Vision-Language-Action models (VLAs) with world modeling has shown promise in improving robotic policy learning. However, it remains challenging to jointly predict next-state observations and action sequences because of the inherent difference between the two modalities. To address this, we propose DUal-STream diffusion (DUST), a world-model augmented VLA framework that handles the modality conflict and enhances the performance of VLAs across diverse tasks. Specifically, we propose a multimodal diffusion transformer architecture that explicitly maintains separate modality streams while still enabling cross-modal knowledge sharing. In addition, we introduce independent noise perturbations for each modality and a decoupled flow-matching loss. This design enables the model to learn the joint distribution in a bidirectional manner while avoiding the need for a unified latent space. Based on the decoupling of modalities during training, we also introduce a joint sampling method that supports test-time scaling, where action and vision tokens evolve asynchronously at different rates. Through experiments on simulated benchmarks such as RoboCasa and GR-1, DUST achieves up to 6% gains over baseline methods, while our test-time scaling approach provides an additional 2-5% boost. On real-world tasks with the Franka Research 3, DUST improves success rates by 13%, confirming its effectiveness beyond simulation. Furthermore, pre-training on action-free videos from BridgeV2 yields significant transfer gains on RoboCasa, underscoring DUST's potential for large-scale VLA pretraining.
This paper presents a framework that leverages pre-trained foundation models for robotic manipulation without domain-specific training. The framework integrates off-the-shelf models, combining multimodal perception from foundation models with a general-purpose reasoning model capable of robust task sequencing. Scene graphs, dynamically maintained within the framework, provide spatial awareness and enable consistent reasoning about the environment. The framework is evaluated through a series of tabletop robotic manipulation experiments, and the results highlight its potential for building robotic manipulation systems directly on top of off-the-shelf foundation models.
Implicit policies parameterized by generative models, such as Diffusion Policy, have become the standard for policy learning and Vision-Language-Action (VLA) models in robotics. However, these approaches often suffer from high computational cost, exposure bias, and unstable inference dynamics, which lead to divergence under distribution shifts. Energy-Based Models (EBMs) address these issues by learning energy landscapes end-to-end and modeling equilibrium dynamics, offering improved robustness and reduced exposure bias. Yet, policies parameterized by EBMs have historically struggled to scale effectively. Recent work on Energy-Based Transformers (EBTs) demonstrates the scalability of EBMs to high-dimensional spaces, but their potential for solving core challenges in physically embodied models remains underexplored. We introduce a new energy-based architecture, EBT-Policy, that solves core issues in robotic and real-world settings. Across simulated and real-world tasks, EBT-Policy consistently outperforms diffusion-based policies, while requiring less training and inference computation. Remarkably, on some tasks it converges within just two inference steps, a 50x reduction compared to Diffusion Policy's 100. Moreover, EBT-Policy exhibits emergent capabilities not seen in prior models, such as zero-shot recovery from failed action sequences using only behavior cloning and without explicit retry training. By leveraging its scalar energy for uncertainty-aware inference and dynamic compute allocation, EBT-Policy offers a promising path toward robust, generalizable robot behavior under distribution shifts.
Human-robot interaction frequently involves physical proximity or contact. In human-human settings, people flexibly accept, reject, or tolerate such approaches depending on the relationship and context. We explore the design of a robot's rejective internal state and corresponding avoidance behaviors, such as withdrawing or pushing away, when a person approaches. We model the accumulation and decay of discomfort as a function of interpersonal distance, and implement tolerance (endurance) and limit-exceeding avoidance driven by the Dominance axis of the PAD affect model. The behaviors and their intensities are realized on an arm robot. Results illustrate a coherent pipeline from internal state parameters to graded endurance motions and, once a limit is crossed, to avoidance actions.
Soft robots offer unmatched adaptability and safety in unstructured environments, yet their compliant, high-dimensional, and nonlinear dynamics make modeling for control notoriously difficult. Existing data-driven approaches often fail to generalize, constrained by narrowly focused task demonstrations or inefficient random exploration. We introduce SoftAE, an uncertainty-aware active exploration framework that autonomously learns task-agnostic and generalizable dynamics models of soft robotic systems. SoftAE employs probabilistic ensemble models to estimate epistemic uncertainty and actively guides exploration toward underrepresented regions of the state-action space, achieving efficient coverage of diverse behaviors without task-specific supervision. We evaluate SoftAE on three simulated soft robotic platforms -- a continuum arm, an articulated fish in fluid, and a musculoskeletal leg with hybrid actuation -- and on a pneumatically actuated continuum soft arm in the real world. Compared with random exploration and task-specific model-based reinforcement learning, SoftAE produces more accurate dynamics models, enables superior zero-shot control on unseen tasks, and maintains robustness under sensing noise, actuation delays, and nonlinear material effects. These results demonstrate that uncertainty-driven active exploration can yield scalable, reusable dynamics models across diverse soft robotic morphologies, representing a step toward more autonomous, adaptable, and data-efficient control in compliant robots.
Multi-embodiment grasping focuses on developing approaches that exhibit generalist behavior across diverse gripper designs. Existing methods often learn the kinematic structure of the robot implicitly and face challenges due to the difficulty of sourcing the required large-scale data. In this work, we present a data-efficient, flow-based, equivariant grasp synthesis architecture that can handle different gripper types with variable degrees of freedom and successfully exploit the underlying kinematic model, deducing all necessary information solely from the gripper and scene geometry. Unlike previous equivariant grasping methods, we translated all modules from the ground up to JAX and provide a model with batching capabilities over scenes, grippers, and grasps, resulting in smoother learning, improved performance and faster inference time. Our dataset encompasses grippers ranging from humanoid hands to parallel yaw grippers and includes 25,000 scenes and 20 million grasps.
Effective, reliable, and efficient evaluation of autonomous driving safety is essential to demonstrate its trustworthiness. Criticality metrics provide an objective means of assessing safety. However, as existing metrics primarily target longitudinal conflicts, accurately quantifying the risks of lateral conflicts - prevalent in urban settings - remains challenging. This paper proposes the Modified-Emergency Index (MEI), a metric designed to quantify evasive effort in lateral conflicts. Compared to the original Emergency Index (EI), MEI refines the estimation of the time available for evasive maneuvers, enabling more precise risk quantification. We validate MEI on a public lateral conflict dataset based on Argoverse-2, from which we extract over 1,500 high-quality AV conflict cases, including more than 500 critical events. MEI is then compared with the well-established ACT and the widely used PET metrics. Results show that MEI consistently outperforms them in accurately quantifying criticality and capturing risk evolution. Overall, these findings highlight MEI as a promising metric for evaluating urban conflicts and enhancing the safety assessment framework for autonomous driving. The open-source implementation is available at https://github.com/AutoChengh/MEI.
In this paper a modular and scalable architecture for heterogeneous swarm-based Counter Unmanned Aerial Systems (C-UASs) built on PX4-Autopilot and Robot Operating System 2 (ROS 2) framework is presented. The proposed architecture emphasizes seamless integration of hardware components by introducing independent ROS 2 nodes for each component of a Unmanned Aerial Vehicle (UAV). Communication between swarm participants is abstracted in software, allowing the use of various technologies without architectural changes. Key functionalities are supported, e.g. leader following and formation flight to maneuver the swarm. The system also allows computer vision algorithms to be integrated for the detection and tracking of UAVs. Additionally, a ground station control is integrated for the coordination of swarm operations. Swarm-based Unmanned Aerial System (UAS) architecture is verified within a Gazebo simulation environment but also in real-world demonstrations.
Planning under partial observability is an essential capability of autonomous robots. The Partially Observable Markov Decision Process (POMDP) provides a powerful framework for planning under partial observability problems, capturing the stochastic effects of actions and the limited information available through noisy observations. POMDP solving could benefit tremendously from massive parallelization of today's hardware, but parallelizing POMDP solvers has been challenging. They rely on interleaving numerical optimization over actions with the estimation of their values, which creates dependencies and synchronization bottlenecks between parallel processes that can quickly offset the benefits of parallelization. In this paper, we propose Vectorized Online POMDP Planner (VOPP), a novel parallel online solver that leverages a recent POMDP formulation that analytically solves part of the optimization component, leaving only the estimation of expectations for numerical computation. VOPP represents all data structures related to planning as a collection of tensors and implements all planning steps as fully vectorized computations over this representation. The result is a massively parallel solver with no dependencies and synchronization bottlenecks between parallel computations. Experimental results indicate that VOPP is at least 20X more efficient in computing near-optimal solutions compared to an existing state-of-the-art parallel online solver.
Grasping objects with diverse mechanical properties, such as heavy, slippery, or fragile items, remains a significant challenge in robotics. Conventional grippers often rely on applying high normal forces, which can cause damage to objects. To address this limitation, we present a hybrid gripper finger that combines a rigid structural shell with a soft, inflatable silicone pocket. The gripper finger can actively modulate its surface friction by controlling the internal air pressure of the silicone pocket. Results from fundamental experiments indicate that increasing the internal pressure results in a proportional increase in the effective coefficient of friction. This enables the gripper to stably lift heavy and slippery objects without increasing the gripping force and to handle fragile or deformable objects, such as eggs, fruits, and paper cups, with minimal damage by increasing friction rather than applying excessive force. The experimental results demonstrate that the hybrid gripper finger with adaptable friction provides a robust and safer alternative to relying solely on high normal forces, thereby enhancing the gripper flexibility in handling delicate, fragile, and diverse objects.
Multi-robot systems, particularly mobile manipulators, face challenges in control coordination and dynamic stability when working together. To address this issue, this study proposes MobiDock, a modular self-reconfigurable mobile manipulator system that allows two independent robots to physically connect and form a unified mobile bimanual platform. This process helps transform a complex multi-robot control problem into the management of a simpler, single system. The system utilizes an autonomous docking strategy based on computer vision with AprilTag markers and a new threaded screw-lock mechanism. Experimental results show that the docked configuration demonstrates better performance in dynamic stability and operational efficiency compared to two independently cooperating robots. Specifically, the unified system has lower Root Mean Square (RMS) Acceleration and Jerk values, higher angular precision, and completes tasks significantly faster. These findings confirm that physical reconfiguration is a powerful design principle that simplifies cooperative control, improving stability and performance for complex tasks in real-world environments.
Positioning of underwater robots in confined and cluttered spaces remains a key challenge for field operations. Existing systems are mostly designed for large, open-water environments and struggle in industrial settings due to poor coverage, reliance on external infrastructure, and the need for feature-rich surroundings. Multipath effects from continuous sound reflections further degrade signal quality, reducing accuracy and reliability. Accurate and easily deployable positioning is essential for repeatable autonomous missions; however, this requirement has created a technological bottleneck limiting underwater robotic deployment. This paper presents the Collaborative Aquatic Positioning (CAP) system, which integrates collaborative robotics and sensor fusion to overcome these limitations. Inspired by the "mother-ship" concept, the surface vehicle acts as a mobile leader to assist in positioning a submerged robot, enabling localization even in GPS-denied and highly constrained environments. The system is validated in a large test tank through repeatable autonomous missions using CAP's position estimates for real-time trajectory control. Experimental results demonstrate a mean Euclidean distance (MED) error of 70 mm, achieved in real time without requiring fixed infrastructure, extensive calibration, or environmental features. CAP leverages advances in mobile robot sensing and leader-follower control to deliver a step change in accurate, practical, and infrastructure-free underwater localization.
3D Gaussian splatting (3DGS) and its subsequent variants have led to remarkable progress in simultaneous localization and mapping (SLAM). While most recent 3DGS-based SLAM works focus on small-scale indoor scenes, developing 3DGS-based SLAM methods for large-scale forest scenes holds great potential for many real-world applications, especially for wildfire emergency response and forest management. However, this line of research is impeded by the absence of a comprehensive and high-quality dataset, and collecting such a dataset over real-world scenes is costly and technically infeasible. To this end, we have built a large-scale, comprehensive, and high-quality synthetic dataset for SLAM in wildfire and forest environments. Leveraging the Unreal Engine 5 Electric Dreams Environment Sample Project, we developed a pipeline to easily collect aerial and ground views, including ground-truth camera poses and a range of additional data modalities from unmanned aerial vehicle. Our pipeline also provides flexible controls on environmental factors such as light, weather, and types and conditions of wildfire, supporting the need for various tasks covering forest mapping, wildfire emergency response, and beyond. The resulting pilot dataset, WildfireX-SLAM, contains 5.5k low-altitude RGB-D aerial images from a large-scale forest map with a total size of 16 km2. On top of WildfireX-SLAM, a thorough benchmark is also conducted, which not only reveals the unique challenges of 3DGS-based SLAM in the forest but also highlights potential improvements for future works. The dataset and code will be publicly available. Project page: https://zhicongsun.github.io/wildfirexslam.
Behavior cloning methods for robot learning suffer from poor generalization due to limited data support beyond expert demonstrations. Recent approaches leveraging video prediction models have shown promising results by learning rich spatiotemporal representations from large-scale datasets. However, these models learn action-agnostic dynamics that cannot distinguish between different control inputs, limiting their utility for precise manipulation tasks and requiring large pretraining datasets. We propose a Dynamics-Aligned Flow Matching Policy (DAP) that integrates dynamics prediction into policy learning. Our method introduces a novel architecture where policy and dynamics models provide mutual corrective feedback during action generation, enabling self-correction and improved generalization. Empirical validation demonstrates generalization performance superior to baseline methods on real-world robotic manipulation tasks, showing particular robustness in OOD scenarios including visual distractions and lighting variations.
In this work, we introduce SpikeATac, a multimodal tactile finger combining a taxelized and highly sensitive dynamic response (PVDF) with a static transduction method (capacitive) for multimodal touch sensing. Named for its `spiky' response, SpikeATac's 16-taxel PVDF film sampled at 4 kHz provides fast, sensitive dynamic signals to the very onset and breaking of contact. We characterize the sensitivity of the different modalities, and show that SpikeATac provides the ability to stop quickly and delicately when grasping fragile, deformable objects. Beyond parallel grasping, we show that SpikeATac can be used in a learning-based framework to achieve new capabilities on a dexterous multifingered robot hand. We use a learning recipe that combines reinforcement learning from human feedback with tactile-based rewards to fine-tune the behavior of a policy to modulate force. Our hardware platform and learning pipeline together enable a difficult dexterous and contact-rich task that has not previously been achieved: in-hand manipulation of fragile objects. Videos are available at \href{https://roamlab.github.io/spikeatac/}{roamlab.github.io/spikeatac}.
Visual reasoning, particularly spatial reasoning, is a challenging cognitive task that requires understanding object relationships and their interactions within complex environments, especially in robotics domain. Existing vision_language models (VLMs) excel at perception tasks but struggle with fine-grained spatial reasoning due to their implicit, correlation-driven reasoning and reliance solely on images. We propose a novel neuro_symbolic framework that integrates both panoramic-image and 3D point cloud information, combining neural perception with symbolic reasoning to explicitly model spatial and logical relationships. Our framework consists of a perception module for detecting entities and extracting attributes, and a reasoning module that constructs a structured scene graph to support precise, interpretable queries. Evaluated on the JRDB-Reasoning dataset, our approach demonstrates superior performance and reliability in crowded, human_built environments while maintaining a lightweight design suitable for robotics and embodied AI applications.
Rehabilitation of aging pipes requires accurate condition assessment and mapping far into the pipe interiors. Soft growing vine robot systems are particularly promising for navigating confined, sinuous paths such as in pipes, but are currently limited by complex subsystems and a lack of validation in real-world industrial settings. In this paper, we introduce the concept and implementation of a hermetic and transparent vine robot system for visual condition assessment and mapping within non-branching pipes. This design encloses all mechanical and electrical components within the vine robot's soft, airtight, and transparent body, protecting them from environmental interference while enabling visual sensing. Because this approach requires an enclosed mechanism for transporting sensors, we developed, modeled, and tested a passively adapting enclosed tip mount. Finally, we validated the hermetic and transparent vine robot system concept through a real-world condition assessment and mapping task in a wastewater pipe. This work advances the use of soft-growing vine robots in pipe inspection by developing and demonstrating a robust, streamlined, field-validated system suitable for continued development and deployment.