Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
We present a learnable physics simulator that provides accurate motion and force-torque prediction of robot end effectors in contact-rich manipulation. The proposed model extends the state-of-the-art GNN-based simulator (FIGNet) with novel node and edge types, enabling action-conditional predictions for control and state estimation tasks. In simulation, the MPC agent using our model matches the performance of the same controller with the ground truth dynamics model in a challenging peg-in-hole task, while in the real-world experiment, our model achieves a 50% improvement in motion prediction accuracy and 3$\times$ increase in force-torque prediction precision over the baseline physics simulator. Source code and data are publicly available.
Navigation is a fundamental capability in embodied AI, representing the intelligence required to perceive and interact within physical environments following language instructions. Despite significant progress in large Vision-Language Models (VLMs), which exhibit remarkable zero-shot performance on general vision-language tasks, their generalization ability in embodied navigation remains largely confined to narrow task settings and embodiment-specific architectures. In this work, we introduce a cross-embodiment and cross-task Navigation Foundation Model (NavFoM), trained on eight million navigation samples that encompass quadrupeds, drones, wheeled robots, and vehicles, and spanning diverse tasks such as vision-and-language navigation, object searching, target tracking, and autonomous driving. NavFoM employs a unified architecture that processes multimodal navigation inputs from varying camera configurations and navigation horizons. To accommodate diverse camera setups and temporal horizons, NavFoM incorporates identifier tokens that embed camera view information of embodiments and the temporal context of tasks. Furthermore, to meet the demands of real-world deployment, NavFoM controls all observation tokens using a dynamically adjusted sampling strategy under a limited token length budget. Extensive evaluations on public benchmarks demonstrate that our model achieves state-of-the-art or highly competitive performance across multiple navigation tasks and embodiments without requiring task-specific fine-tuning. Additional real-world experiments further confirm the strong generalization capability and practical applicability of our approach.
This paper proposes deception as a mechanism for out-of-distribution (OOD) generalization: by learning data representations that make training data appear independent and identically distributed (iid) to an observer, we can identify stable features that eliminate spurious correlations and generalize to unseen domains. We refer to this principle as deceptive risk minimization (DRM) and instantiate it with a practical differentiable objective that simultaneously learns features that eliminate distribution shifts from the perspective of a detector based on conformal martingales while minimizing a task-specific loss. In contrast to domain adaptation or prior invariant representation learning methods, DRM does not require access to test data or a partitioning of training data into a finite number of data-generating domains. We demonstrate the efficacy of DRM on numerical experiments with concept shift and a simulated imitation learning setting with covariate shift in environments that a robot is deployed in.
As robots become increasingly prevalent in both homes and industrial settings, the demand for intuitive and efficient human-machine interaction continues to rise. Gesture recognition offers an intuitive control method that does not require physical contact with devices and can be implemented using various sensing technologies. Wireless solutions are particularly flexible and minimally invasive. While camera-based vision systems are commonly used, they often raise privacy concerns and can struggle in complex or poorly lit environments. In contrast, radar sensing preserves privacy, is robust to occlusions and lighting, and provides rich spatial data such as distance, relative velocity, and angle. We present a gesture-controlled robotic arm using mm-wave radar for reliable, contactless motion recognition. Nine gestures are recognized and mapped to real-time commands with precision. Case studies are conducted to demonstrate the system practicality, performance and reliability for gesture-based robotic manipulation. Unlike prior work that treats gesture recognition and robotic control separately, our system unifies both into a real-time pipeline for seamless, contactless human-robot interaction.
Simulating hostile attacks of physical autonomous systems can be a useful tool to examine their robustness to attack and inform vulnerability-aware design. In this work, we examine this through the lens of multi-robot patrol, by presenting a machine learning-based adversary model that observes robot patrol behavior in order to attempt to gain undetected access to a secure environment within a limited time duration. Such a model allows for evaluation of a patrol system against a realistic potential adversary, offering insight into future patrol strategy design. We show that our new model outperforms existing baselines, thus providing a more stringent test, and examine its performance against multiple leading decentralized multi-robot patrol strategies.
Semantic mapping aims to construct a 3D semantic representation of the environment, providing essential knowledge for robots operating in complex outdoor settings. While Bayesian Kernel Inference (BKI) addresses discontinuities of map inference from sparse sensor data, existing semantic mapping methods suffer from various sources of uncertainties in challenging outdoor environments. To address these issues, we propose an uncertainty-aware semantic mapping framework that handles multiple sources of uncertainties, which significantly degrade mapping performance. Our method estimates uncertainties in semantic predictions using Evidential Deep Learning and incorporates them into BKI for robust semantic inference. It further aggregates noisy observations into coherent Gaussian representations to mitigate the impact of unreliable points, while employing geometry-aligned kernels that adapt to complex scene structures. These Gaussian primitives effectively fuse local geometric and semantic information, enabling robust, uncertainty-aware mapping in complex outdoor scenarios. Comprehensive evaluation across diverse off-road and urban outdoor environments demonstrates consistent improvements in mapping quality, uncertainty calibration, representational flexibility, and robustness, while maintaining real-time efficiency.
While generative world models have advanced video and occupancy-based data synthesis, LiDAR generation remains underexplored despite its importance for accurate 3D perception. Extending generation to 4D LiDAR data introduces challenges in controllability, temporal stability, and evaluation. We present LiDARCrafter, a unified framework that converts free-form language into editable LiDAR sequences. Instructions are parsed into ego-centric scene graphs, which a tri-branch diffusion model transforms into object layouts, trajectories, and shapes. A range-image diffusion model generates the initial scan, and an autoregressive module extends it into a temporally coherent sequence. The explicit layout design further supports object-level editing, such as insertion or relocation. To enable fair assessment, we provide EvalSuite, a benchmark spanning scene-, object-, and sequence-level metrics. On nuScenes, LiDARCrafter achieves state-of-the-art fidelity, controllability, and temporal consistency, offering a foundation for LiDAR-based simulation and data augmentation.
Diffusion-based planners have gained significant recent attention for their robustness and performance in long-horizon tasks. However, most existing planners rely on a fixed, pre-specified horizon during both training and inference. This rigidity often produces length-mismatch (trajectories that are too short or too long) and brittle performance across instances with varying geometric or dynamical difficulty. In this paper, we introduce the Variable Horizon Diffuser (VHD) framework, which treats the horizon as a learned variable rather than a fixed hyperparameter. Given a start-goal pair, we first predict an instance-specific horizon using a learned Length Predictor model, which guides a Diffusion Planner to generate a trajectory of the desired length. Our design maintains compatibility with existing diffusion planners by controlling trajectory length through initial noise shaping and training on randomly cropped sub-trajectories, without requiring architectural changes. Empirically, VHD improves success rates and path efficiency in maze-navigation and robot-arm control benchmarks, showing greater robustness to horizon mismatch and unseen lengths, while keeping training simple and offline-only.
Language and embodied perspective taking are essential for human collaboration, yet few computational models address both simultaneously. This work investigates the PerspAct system [1], which integrates the ReAct (Reason and Act) paradigm with Large Language Models (LLMs) to simulate developmental stages of perspective taking, grounded in Selman's theory [2]. Using an extended director task, we evaluate GPT's ability to generate internal narratives aligned with specified developmental stages, and assess how these influence collaborative performance both qualitatively (action selection) and quantitatively (task efficiency). Results show that GPT reliably produces developmentally-consistent narratives before task execution but often shifts towards more advanced stages during interaction, suggesting that language exchanges help refine internal representations. Higher developmental stages generally enhance collaborative effectiveness, while earlier stages yield more variable outcomes in complex contexts. These findings highlight the potential of integrating embodied perspective taking and language in LLMs to better model developmental dynamics and stress the importance of evaluating internal speech during combined linguistic and embodied tasks.
Scaling Transformer policies and diffusion models has advanced robotic manipulation, yet combining these techniques in lightweight, cross-embodiment learning settings remains challenging. We study design choices that most affect stability and performance for diffusion-transformer policies trained on heterogeneous, multimodal robot data, and introduce Tenma, a lightweight diffusion-transformer for bi-manual arm control. Tenma integrates multiview RGB, proprioception, and language via a cross-embodiment normalizer that maps disparate state/action spaces into a shared latent space; a Joint State-Time encoder for temporally aligned observation learning with inference speed boosts; and a diffusion action decoder optimized for training stability and learning capacity. Across benchmarks and under matched compute, Tenma achieves an average success rate of 88.95% in-distribution and maintains strong performance under object and scene shifts, substantially exceeding baseline policies whose best in-distribution average is 18.12%. Despite using moderate data scale, Tenma delivers robust manipulation and generalization, indicating the great potential for multimodal and cross-embodiment learning strategies for further augmenting the capacity of transformer-based imitation learning policies.
Imitation learning (IL) enables efficient skill acquisition from demonstrations but often struggles with long-horizon tasks and high-precision control due to compounding errors. Residual policy learning offers a promising, model-agnostic solution by refining a base policy through closed-loop corrections. However, existing approaches primarily focus on local corrections to the base policy, lacking a global understanding of state evolution, which limits robustness and generalization to unseen scenarios. To address this, we propose incorporating global dynamics modeling to guide residual policy updates. Specifically, we leverage Koopman operator theory to impose linear time-invariant structure in a learned latent space, enabling reliable state transitions and improved extrapolation for long-horizon prediction and unseen environments. We introduce KORR (Koopman-guided Online Residual Refinement), a simple yet effective framework that conditions residual corrections on Koopman-predicted latent states, enabling globally informed and stable action refinement. We evaluate KORR on long-horizon, fine-grained robotic furniture assembly tasks under various perturbations. Results demonstrate consistent gains in performance, robustness, and generalization over strong baselines. Our findings further highlight the potential of Koopman-based modeling to bridge modern learning methods with classical control theory. For more details, please refer to https://jiachengliu3.github.io/TrajBooster.
This paper presents UniPilot, a compact hardware-software autonomy payload that can be integrated across diverse robot embodiments to enable autonomous operation in GPS-denied environments. The system integrates a multi-modal sensing suite including LiDAR, radar, vision, and inertial sensing for robust operation in conditions where uni-modal approaches may fail. UniPilot runs a complete autonomy software comprising multi-modal perception, exploration and inspection path planning, and learning-based navigation policies. The payload provides robust localization, mapping, planning, and safety and control capabilities in a single unit that can be deployed across a wide range of platforms. A large number of experiments are conducted across diverse environments and on a variety of robot platforms to validate the mapping, planning, and safe navigation capabilities enabled by the payload.
This paper investigates how the performance of visual navigation policies trained in simulation compares to policies trained with real-world data. Performance degradation of simulator-trained policies is often significant when they are evaluated in the real world. However, despite this well-known sim-to-real gap, we demonstrate that simulator-trained policies can match the performance of their real-world-trained counterparts. Central to our approach is a navigation policy architecture that bridges the sim-to-real appearance gap by leveraging pretrained visual representations and runs real-time on robot hardware. Evaluations on a wheeled mobile robot show that the proposed policy, when trained in simulation, outperforms its real-world-trained version by 31% and the prior state-of-the-art methods by 50% in navigation success rate. Policy generalization is verified by deploying the same model onboard a drone. Our results highlight the importance of diverse image encoder pretraining for sim-to-real generalization, and identify on-policy learning as a key advantage of simulated training over training with real data.
Traditional industrial robot programming is often complex and time-consuming, typically requiring weeks or even months of effort from expert programmers. Although Programming by Demonstration (PbD) offers a more accessible alternative, intuitive interfaces for robot control and demonstration collection remain challenging. To address this, we propose an Augmented Reality (AR)-enhanced robot teleoperation system that integrates AR-based control with spatial point cloud rendering, enabling intuitive, contact-free demonstrations. This approach allows operators to control robots remotely without entering the workspace or using conventional tools like the teach pendant. The proposed system is generally applicable and has been demonstrated on ABB robot platforms, specifically validated with the IRB 1200 industrial robot and the GoFa 5 collaborative robot. A user study evaluates the impact of real-time environmental perception, specifically with and without point cloud rendering, on task completion accuracy, efficiency, and user confidence. Results indicate that enhanced perception significantly improves task performance by 28% and enhances user experience, as reflected by a 12% increase in the System Usability Scale (SUS) score. This work contributes to the advancement of intuitive robot teleoperation, AR interface design, environmental perception, and teleoperation safety mechanisms in industrial settings for demonstration collection. The collected demonstrations may serve as valuable training data for machine learning applications.
While foundation models show remarkable progress in language and vision, existing vision-language models (VLMs) still have limited spatial and embodiment understanding. Transferring VLMs to embodied domains reveals fundamental mismatches between modalities, pretraining distributions, and training objectives, leaving action comprehension and generation as a central bottleneck on the path to AGI. We introduce WALL-OSS, an end-to-end embodied foundation model that leverages large-scale multimodal pretraining to achieve (1) embodiment-aware vision-language understanding, (2) strong language-action association, and (3) robust manipulation capability. Our approach employs a tightly coupled architecture and multi-strategies training curriculum that enables Unified Cross-Level CoT-seamlessly unifying instruction reasoning, subgoal decomposition, and fine-grained action synthesis within a single differentiable framework. Our results show that WALL-OSS attains high success on complex long-horizon manipulations, demonstrates strong instruction-following capabilities, complex understanding and reasoning, and outperforms strong baselines, thereby providing a reliable and scalable path from VLMs to embodied foundation models.
Developmental changes in body morphology profoundly shape locomotion in animals, yet artificial agents and robots are typically trained under static physical parameters. Inspired by ontogenetic scaling of muscle power in biology, we propose Scaling Mechanical Output over Lifetime (SMOL), a novel curriculum that dynamically modulates robot actuator strength to mimic natural variations in power-to-weight ratio during growth and ageing. Integrating SMOL into the MAP-Elites quality-diversity framework, we vary the torque in standard robotics tasks to mimic the evolution of strength in animals as they grow up and as their body changes. Through comprehensive empirical evaluation, we show that the SMOL schedule consistently elevates both performance and diversity of locomotion behaviours across varied control scenarios, by allowing agents to leverage advantageous physics early on to discover skills that act as stepping stones when they reach their final standard body properties. Based on studies of the total power output in humans, we also implement the SMOL-Human schedule that models isometric body variations due to non-linear changes like puberty, and study its impact on robotics locomotion.
LiDAR-to-OpenStreetMap (OSM) localization has gained increasing attention, as OSM provides lightweight global priors such as building footprints. These priors enhance global consistency for robot navigation, but OSM is often incomplete or outdated, limiting its reliability in real-world deployment. Meanwhile, LiDAR itself suffers from a limited field of view (FoV), where motorized rotation is commonly used to achieve panoramic coverage. Existing motorized LiDAR systems, however, typically employ constant-speed scanning that disregards both scene structure and map priors, leading to wasted effort in feature-sparse regions and degraded localization accuracy. To address these challenges, we propose Adaptive LiDAR Scanning with OSM guidance, a framework that integrates global priors with local observability prediction to improve localization robustness. Specifically, we augment uncertainty-aware model predictive control with an OSM-aware term that adaptively allocates scanning effort according to both scene-dependent observability and the spatial distribution of OSM features. The method is implemented in ROS with a motorized LiDAR odometry backend and evaluated in both simulation and real-world experiments. Results on campus roads, indoor corridors, and urban environments demonstrate significant reductions in trajectory error compared to constant-speed baselines, while maintaining scan completeness. These findings highlight the potential of coupling open-source maps with adaptive LiDAR scanning to achieve robust and efficient localization in complex environments.
Autonomous stocking in retail environments, particularly supermarkets, presents challenges due to dynamic human interactions, constrained spaces, and diverse product geometries. This paper introduces an efficient end-to-end robotic system for autonomous shelf stocking and fronting, integrating commercially available hardware with a scalable algorithmic architecture. A major contribution of this work is the system integration of off-the-shelf hardware and ROS2-based perception, planning, and control into a single deployable platform for retail environments. Our solution leverages Behavior Trees (BTs) for task planning, fine-tuned vision models for object detection, and a two-step Model Predictive Control (MPC) framework for precise shelf navigation using ArUco markers. Laboratory experiments replicating realistic supermarket conditions demonstrate reliable performance, achieving over 98% success in pick-and-place operations across a total of more than 700 stocking events. However, our comparative benchmarks indicate that the performance and cost-effectiveness of current autonomous systems remain inferior to that of human workers, which we use to highlight key improvement areas and quantify the progress still required before widespread commercial deployment can realistically be achieved.