Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Federated Learning (FL) enables collaborative model training across decentralised clients while keeping local data private, making it a widely adopted privacy-enhancing technology (PET). Despite its privacy benefits, FL remains vulnerable to privacy attacks, including those targeting specific clients. In this paper, we study an underexplored threat where a dishonest orchestrator intentionally manipulates the aggregation process to induce targeted overfitting in the local models of specific clients. Whereas many studies in this area predominantly focus on reducing the amount of information leakage during training, we focus on enabling an early client-side detection of targeted overfitting, thereby allowing clients to disengage before significant harm occurs. In line with this, we propose three detection techniques - (a) label flipping, (b) backdoor trigger injection, and (c) model fingerprinting - that enable clients to verify the integrity of the global aggregation. We evaluated our methods on multiple datasets under different attack scenarios. Our results show that the three methods reliably detect targeted overfitting induced by the orchestrator, but they differ in terms of computational complexity, detection latency, and false-positive rates.
Federated Learning (FL) allows collaborative model training across distributed clients without sharing raw data, thus preserving privacy. However, the system remains vulnerable to privacy leakage from gradient updates and Byzantine attacks from malicious clients. Existing solutions face a critical trade-off among privacy preservation, Byzantine robustness, and computational efficiency. We propose a novel scheme that effectively balances these competing objectives by integrating homomorphic encryption with dimension compression based on the Johnson-Lindenstrauss transformation. Our approach employs a dual-server architecture that enables secure Byzantine defense in the ciphertext domain while dramatically reducing computational overhead through gradient compression. The dimension compression technique preserves the geometric relationships necessary for Byzantine defence while reducing computation complexity from $O(dn)$ to $O(kn)$ cryptographic operations, where $k \ll d$. Extensive experiments across diverse datasets demonstrate that our approach maintains model accuracy comparable to non-private FL while effectively defending against Byzantine clients comprising up to $40\%$ of the network.
In Vehicle-to-Everything (V2X) networks with multi-hop communication, Road Side Units (RSUs) intend to gather location data from the vehicles to offer various location-based services. Although vehicles use the Global Positioning System (GPS) for navigation, they may refrain from sharing their exact GPS coordinates to the RSUs due to privacy considerations. Thus, to address the localization expectations of the RSUs and the privacy concerns of the vehicles, we introduce a relaxed-privacy model wherein the vehicles share their partial location information in order to avail the location-based services. To implement this notion of relaxed-privacy, we propose a low-latency protocol for spatial-provenance recovery, wherein vehicles use correlated linear Bloom filters to embed their position information. Our proposed spatial-provenance recovery process takes into account the resolution of localization, the underlying ad hoc protocol, and the coverage range of the wireless technology used by the vehicles. Through a rigorous theoretical analysis, we present extensive analysis on the underlying trade-off between relaxed-privacy and the communication-overhead of the protocol. Finally, using a wireless testbed, we show that our proposed method requires a few bits in the packet header to provide security features such as localizing a low-power jammer executing a denial-of-service attack.
Unlearning is the predominant method for removing the influence of data in machine learning models. However, even after unlearning, models often continue to produce the same predictions on the unlearned data with high confidence. This persistent behavior can be exploited by adversaries using confident model predictions on incorrect or obsolete data to harm users. We call this threat model, which unlearning fails to protect against, *test-time privacy*. In particular, an adversary with full model access can bypass any naive defenses which ensure test-time privacy. To address this threat, we introduce an algorithm which perturbs model weights to induce maximal uncertainty on protected instances while preserving accuracy on the rest of the instances. Our core algorithm is based on finetuning with a Pareto optimal objective that explicitly balances test-time privacy against utility. We also provide a certifiable approximation algorithm which achieves $(\varepsilon, \delta)$ guarantees without convexity assumptions. We then prove a tight, non-vacuous bound that characterizes the privacy-utility tradeoff that our algorithms incur. Empirically, our method obtains $>3\times$ stronger uncertainty than pretraining with $<0.2\%$ drops in accuracy on various image recognition benchmarks. Altogether, this framework provides a tool to guarantee additional protection to end users.
Deep learning-based face recognition (FR) technology exacerbates privacy concerns in photo sharing. In response, the research community developed a suite of anti-FR methods to block identity extraction by unauthorized FR systems. Benefiting from quasi-imperceptible alteration, perturbation-based methods are well-suited for privacy protection of subject faces in photos, as they allow familiar persons to recognize subjects via naked eyes. However, we reveal that perturbation-based methods provide a false sense of privacy through theoretical analysis and experimental validation. Therefore, new alternative solutions should be found to protect subject faces. In this paper, we explore synthesis-based methods as a promising solution, whose challenge is to enable familiar persons to recognize subjects. To solve the challenge, we present a key insight: In most photo sharing scenarios, familiar persons recognize subjects through identity perception rather than meticulous face analysis. Based on the insight, we propose the first synthesis-based method dedicated to subject faces, i.e., PerceptFace, which can make identity unextractable yet perceptible. To enhance identity perception, a new perceptual similarity loss is designed for faces, reducing the alteration in regions of high sensitivity to human vision. As a synthesis-based method, PerceptFace can inherently provide reliable identity protection. Meanwhile, out of the confine of meticulous face analysis, PerceptFace focuses on identity perception from a more practical scenario, which is also enhanced by the designed perceptual similarity loss. Sufficient experiments show that PerceptFace achieves a superior trade-off between identity protection and identity perception compared to existing methods. We provide a public API of PerceptFace and believe that it has great potential to become a practical anti-FR tool.
The Domain Name System (DNS), which converts domain names to their respective IP addresses, has advanced enhancements aimed at safeguarding DNS data and users' identity from attackers. The recent privacy-focused advancements have enabled the IETF to standardize several protocols. Nevertheless, these protocols tend to focus on either strengthening user privacy (like Oblivious DNS and Oblivious DNS-over-HTTPS) or reducing resolution latency (as demonstrated by DNS-over-QUIC). Achieving both within a single protocol remains a key challenge, which we address in this paper. Our proposed protocol -- 'Oblivious DNS-over-QUIC' (ODoQ) -- leverages the benefits of the QUIC protocol and incorporates an intermediary proxy server to protect the client's identity from exposure to the recursive resolver.
Recommender systems (RecSys) have been widely applied to various applications, including E-commerce, finance, healthcare, social media and have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. However, recent studies have shown that RecSys are vulnerable to membership inference attacks (MIAs), which aim to infer whether user interaction record was used to train a target model or not. MIAs on RecSys models can directly lead to a privacy breach. For example, via identifying the fact that a purchase record that has been used to train a RecSys associated with a specific user, an attacker can infer that user's special quirks. In recent years, MIAs have been shown to be effective on other ML tasks, e.g., classification models and natural language processing. However, traditional MIAs are ill-suited for RecSys due to the unseen posterior probability. Although MIAs on RecSys form a newly emerging and rapidly growing research area, there has been no systematic survey on this topic yet. In this article, we conduct the first comprehensive survey on RecSys MIAs. This survey offers a comprehensive review of the latest advancements in RecSys MIAs, exploring the design principles, challenges, attack and defense associated with this emerging field. We provide a unified taxonomy that categorizes different RecSys MIAs based on their characterizations and discuss their pros and cons. Based on the limitations and gaps identified in this survey, we point out several promising future research directions to inspire the researchers who wish to follow this area. This survey not only serves as a reference for the research community but also provides a clear description for researchers outside this research domain.
Decentralized federated learning faces privacy risks because model updates can leak data through inference attacks and membership inference, a concern that grows over many client exchanges. Differential privacy offers principled protection by injecting calibrated noise so confidential information remains secure on resource-limited IoT devices. Yet without transparency, black-box training cannot track noise already injected by previous clients and rounds, which forces worst-case additions and harms accuracy. We propose PrivateDFL, an explainable framework that joins hyperdimensional computing with differential privacy and keeps an auditable account of cumulative noise so each client adds only the difference between the required noise and what has already been accumulated. We evaluate on MNIST, ISOLET, and UCI-HAR to span image, signal, and tabular modalities, and we benchmark against transformer-based and deep learning-based baselines trained centrally with Differentially Private Stochastic Gradient Descent (DP-SGD) and Renyi Differential Privacy (RDP). PrivateDFL delivers higher accuracy, lower latency, and lower energy across IID and non-IID partitions while preserving formal (epsilon, delta) guarantees and operating without a central server. For example, under non-IID partitions, PrivateDFL achieves 24.42% higher accuracy than the Vision Transformer on MNIST while using about 10x less training time, 76x lower inference latency, and 11x less energy, and on ISOLET it exceeds Transformer accuracy by more than 80% with roughly 10x less training time, 40x lower inference latency, and 36x less training energy. Future work will extend the explainable accounting to adversarial clients and adaptive topologies with heterogeneous privacy budgets.
The success and wide adoption of generative AI (GenAI), particularly large language models (LLMs), has attracted the attention of cybercriminals seeking to abuse models, steal sensitive data, or disrupt services. Moreover, providing security to LLM-based systems is a great challenge, as both traditional threats to software applications and threats targeting LLMs and their integration must be mitigated. In this survey, we shed light on security and privacy concerns of such LLM-based systems by performing a systematic review and comprehensive categorization of threats and defensive strategies considering the entire software and LLM life cycles. We analyze real-world scenarios with distinct characteristics of LLM usage, spanning from development to operation. In addition, threats are classified according to their severity level and to which scenarios they pertain, facilitating the identification of the most relevant threats. Recommended defense strategies are systematically categorized and mapped to the corresponding life cycle phase and possible attack strategies they attenuate. This work paves the way for consumers and vendors to understand and efficiently mitigate risks during integration of LLMs in their respective solutions or organizations. It also enables the research community to benefit from the discussion of open challenges and edge cases that may hinder the secure and privacy-preserving adoption of LLM-based systems.
Machine learning has shown promise in facial dysmorphology, where characteristic facial features provide diagnostic clues for rare genetic disorders. GestaltMatcher, a leading framework in this field, has demonstrated clinical utility across multiple studies, but its reliance on centralized datasets limits further development, as patient data are siloed across institutions and subject to strict privacy regulations. We introduce a federated GestaltMatcher service based on a cross-silo horizontal federated learning framework, which allows hospitals to collaboratively train a global ensemble feature extractor without sharing patient images. Patient data are mapped into a shared latent space, and a privacy-preserving kernel matrix computation framework enables syndrome inference and discovery while safeguarding confidentiality. New participants can directly benefit from and contribute to the system by adopting the global feature extractor and kernel configuration from previous training rounds. Experiments show that the federated service retains over 90% of centralized performance and remains robust to both varying silo numbers and heterogeneous data distributions.
End-to-end encryption (E2EE) has emerged as a fundamental element of modern digital communication, protecting data from unauthorized access during transmission. By design, E2EE ensures that only the intended recipient can decrypt the information, making it inaccessible even to service providers. Yet, this powerful safeguard of individual privacy and digital trust also introduces a paradox: it can simultaneously prevent law enforcement efforts by hiding potential malicious activities. This paper examines the dual role of E2EE, its critical importance to privacy, the challenges it
Companies are looking to data anonymization research $\unicode{x2013}$ including differential private and synthetic data methods $\unicode{x2013}$ for simple and straightforward compliance solutions. But data anonymization has not taken off in practice because it is anything but simple to implement. For one, it requires making complex choices which are case dependent, such as the domain of the dataset to anonymize; the units to protect; the scope where the data protection should extend to; and the standard of protection. Each variation of these choices changes the very meaning, as well as the practical implications, of differential privacy (or of any other measure of data anonymization). Yet differential privacy is frequently being branded as the same privacy guarantee regardless of variations in these choices. Some data anonymization methods can be effective, but only when the insights required are much larger than the unit of protection. Given that businesses care about profitability, any solution must preserve the patterns between a firm's data and that profitability. As a result, data anonymization solutions usually need to be bespoke and case-specific, which reduces their scalability. Companies should not expect easy wins, but rather recognize that anonymization is just one approach to data privacy with its own particular advantages and drawbacks, while the best strategies jointly leverage the full range of approaches to data privacy and security in combination.
Split Learning (SL) is a distributed learning approach that enables resource-constrained clients to collaboratively train deep neural networks (DNNs) by offloading most layers to a central server while keeping in- and output layers on the client-side. This setup enables SL to leverage server computation capacities without sharing data, making it highly effective in resource-constrained environments dealing with sensitive data. However, the distributed nature enables malicious clients to manipulate the training process. By sending poisoned intermediate gradients, they can inject backdoors into the shared DNN. Existing defenses are limited by often focusing on server-side protection and introducing additional overhead for the server. A significant challenge for client-side defenses is enforcing malicious clients to correctly execute the defense algorithm. We present ZORRO, a private, verifiable, and robust SL defense scheme. Through our novel design and application of interactive zero-knowledge proofs (ZKPs), clients prove their correct execution of a client-located defense algorithm, resulting in proofs of computational integrity attesting to the benign nature of locally trained DNN portions. Leveraging the frequency representation of model partitions enables ZORRO to conduct an in-depth inspection of the locally trained models in an untrusted environment, ensuring that each client forwards a benign checkpoint to its succeeding client. In our extensive evaluation, covering different model architectures as well as various attack strategies and data scenarios, we show ZORRO's effectiveness, as it reduces the attack success rate to less than 6\% while causing even for models storing \numprint{1000000} parameters on the client-side an overhead of less than 10 seconds.
Diffusion models have significantly advanced text-to-image generation, enabling the creation of highly realistic images conditioned on textual prompts and seeds. Given the considerable intellectual and economic value embedded in such prompts, prompt theft poses a critical security and privacy concern. In this paper, we investigate prompt-stealing attacks targeting diffusion models. We reveal that numerical optimization-based prompt recovery methods are fundamentally limited as they do not account for the initial random noise used during image generation. We identify and exploit a noise-generation vulnerability (CWE-339), prevalent in major image-generation frameworks, originating from PyTorch's restriction of seed values to a range of $2^{32}$ when generating the initial random noise on CPUs. Through a large-scale empirical analysis conducted on images shared via the popular platform CivitAI, we demonstrate that approximately 95% of these images' seed values can be effectively brute-forced in 140 minutes per seed using our seed-recovery tool, SeedSnitch. Leveraging the recovered seed, we propose PromptPirate, a genetic algorithm-based optimization method explicitly designed for prompt stealing. PromptPirate surpasses state-of-the-art methods, i.e., PromptStealer, P2HP, and CLIP-Interrogator, achieving an 8-11% improvement in LPIPS similarity. Furthermore, we introduce straightforward and effective countermeasures that render seed stealing, and thus optimization-based prompt stealing, ineffective. We have disclosed our findings responsibly and initiated coordinated mitigation efforts with the developers to address this critical vulnerability.
Secure inference enables privacy-preserving machine learning by leveraging cryptographic protocols that support computations on sensitive user data without exposing it. However, integrating cryptographic protocols with large language models (LLMs) presents significant challenges, as the inherent complexity of these protocols, together with LLMs' massive parameter scale and sophisticated architectures, severely limits practical usability. In this work, we propose ENSI, a novel non-interactive secure inference framework for LLMs, based on the principle of co-designing the cryptographic protocols and LLM architecture. ENSI employs an optimized encoding strategy that seamlessly integrates CKKS scheme with a lightweight LLM variant, BitNet, significantly reducing the computational complexity of encrypted matrix multiplications. In response to the prohibitive computational demands of softmax under homomorphic encryption (HE), we pioneer the integration of the sigmoid attention mechanism with HE as a seamless, retraining-free alternative. Furthermore, by embedding the Bootstrapping operation within the RMSNorm process, we efficiently refresh ciphertexts while markedly decreasing the frequency of costly bootstrapping invocations. Experimental evaluations demonstrate that ENSI achieves approximately an 8x acceleration in matrix multiplications and a 2.6x speedup in softmax inference on CPU compared to state-of-the-art method, with the proportion of bootstrapping is reduced to just 1%.
Ethical questions are discussed regularly in computer security. Still, researchers in computer security lack clear guidance on how to make, document, and assess ethical decisions in research when what is morally right or acceptable is not clear-cut. In this work, we give an overview of the discussion of ethical implications in current published work in computer security by reviewing all 1154 top-tier security papers published in 2024, finding inconsistent levels of ethics reporting with a strong focus of reporting institutional or ethics board approval, human subjects protection, and responsible disclosure, and a lack of discussion of balancing harms and benefits. We further report on the results of a semi-structured interview study with 24 computer security and privacy researchers (among whom were also: reviewers, ethics committee members, and/or program chairs) and their ethical decision-making both as authors and during peer review, finding a strong desire for ethical research, but a lack of consistency in considered values, ethical frameworks (if articulated), decision-making, and outcomes. We present an overview of the current state of the discussion of ethics and current de-facto standards in computer security research, and contribute suggestions to improve the state of ethics in computer security research.
Crop diseases pose significant threats to global food security, agricultural productivity, and sustainable farming practices, directly affecting farmers' livelihoods and economic stability. To address the growing need for effective crop disease management, AI-based disease alerting systems have emerged as promising tools by providing early detection and actionable insights for timely intervention. However, existing systems often overlook critical aspects such as data privacy, market pricing power, and farmer-friendly usability, leaving farmers vulnerable to privacy breaches and economic exploitation. To bridge these gaps, we propose AgriSentinel, the first Privacy-Enhanced Embedded-LLM Crop Disease Alerting System. AgriSentinel incorporates a differential privacy mechanism to protect sensitive crop image data while maintaining classification accuracy. Its lightweight deep learning-based crop disease classification model is optimized for mobile devices, ensuring accessibility and usability for farmers. Additionally, the system includes a fine-tuned, on-device large language model (LLM) that leverages a curated knowledge pool to provide farmers with specific, actionable suggestions for managing crop diseases, going beyond simple alerting. Comprehensive experiments validate the effectiveness of AgriSentinel, demonstrating its ability to safeguard data privacy, maintain high classification performance, and deliver practical, actionable disease management strategies. AgriSentinel offers a robust, farmer-friendly solution for automating crop disease alerting and management, ultimately contributing to improved agricultural decision-making and enhanced crop productivity.
As on-device large language model (LLM) systems become increasingly prevalent, federated fine-tuning enables advanced language understanding and generation directly on edge devices; however, it also involves processing sensitive, user-specific data, raising significant privacy concerns within the federated learning framework. To address these challenges, we propose DP-FedLoRA, a privacy-enhanced federated fine-tuning framework that integrates LoRA-based adaptation with differential privacy in a communication-efficient setting. Each client locally clips and perturbs its LoRA matrices using Gaussian noise to satisfy ($\epsilon$, $\delta$)-differential privacy. We further provide a theoretical analysis demonstrating the unbiased nature of the updates and deriving bounds on the variance introduced by noise, offering practical guidance for privacy-budget calibration. Experimental results across mainstream benchmarks show that DP-FedLoRA delivers competitive performance while offering strong privacy guarantees, paving the way for scalable and privacy-preserving LLM deployment in on-device environments.