Poison to Detect: Detection of Targeted Overfitting in Federated Learning
Abstract
Federated Learning (FL) enables collaborative model training across decentralised clients while keeping local data private, making it a widely adopted privacy-enhancing technology (PET). Despite its privacy benefits, FL remains vulnerable to privacy attacks, including those targeting specific clients. In this paper, we study an underexplored threat where a dishonest orchestrator intentionally manipulates the aggregation process to induce targeted overfitting in the local models of specific clients. Whereas many studies in this area predominantly focus on reducing the amount of information leakage during training, we focus on enabling an early client-side detection of targeted overfitting, thereby allowing clients to disengage before significant harm occurs. In line with this, we propose three detection techniques - (a) label flipping, (b) backdoor trigger injection, and (c) model fingerprinting - that enable clients to verify the integrity of the global aggregation. We evaluated our methods on multiple datasets under different attack scenarios. Our results show that the three methods reliably detect targeted overfitting induced by the orchestrator, but they differ in terms of computational complexity, detection latency, and false-positive rates.