Channel State Information Analysis for Jamming Attack Detection in Static and Dynamic UAV Networks -- An Experimental Study
Abstract
Networks built on the IEEE 802.11 standard have experienced rapid growth in the last decade. Their field of application is vast, including smart home applications, Internet of Things (IoT), and short-range high throughput static and dynamic inter-vehicular communication networks. Within such networks, Channel State Information (CSI) provides a detailed view of the state of the communication channel and represents the combined effects of multipath propagation, scattering, phase shift, fading, and power decay. In this work, we investigate the problem of jamming attack detection in static and dynamic vehicular networks. We utilize ESP32-S3 modules to set up a communication network between an Unmanned Aerial Vehicle (UAV) and a Ground Control Station (GCS), to experimentally test the combined effects of a constant jammer on recorded CSI parameters, and the feasibility of jamming detection through CSI analysis in static and dynamic communication scenarios.