Topological ignition of the stealth coronal mass ejections
Abstract
One of hot topics in the solar physics are the so-called 'stealth' coronal mass ejections (CME), which are not associated with any appreciable energy release events in the lower corona, such as the solar flares. It is often assumed recently that these phenomena might be produced by some specific physical mechanism, but no particular suggestions were put forward. It is the aim of the present paper to show that a promising explanation of the stealth CMEs can be based on the so-called 'topological' ignition of the magnetic reconnection, when the magnetic null point is produced by a specific superposition of the remote sources (sunspots) rather than by the local current systems. As follows from our numerical simulations, the topological model explains very well all basic features of the stealth CMEs: (i) the plasma eruption develops without an appreciable heat release from the spot of reconnection, i.e., without the solar flare; (ii) the spot of reconnection (magnetic null point) can be formed far away from the location of the magnetic field sources; (iii) the trajectories of eruption are usually strongly curved, which can explain observability of CMEs generated behind the solar limb.