Conthereum: Concurrent Ethereum Optimized Transaction Scheduling for Multi-Core Execution
Abstract
Blockchain technology has revolutionized decentralized computation, providing high security through transparent cryptographic protocols and immutable data. However, the Blockchain Trilemma-an inherent trade-off between security, scalability, and performance-limits computational efficiency, resulting in low transactions-per-second (TPS) compared to conventional systems like Visa or PayPal. To address this, we introduce Conthereum, a novel concurrent blockchain solution that enhances multi-core usage in transaction processing through a deterministic scheduling scheme. It reformulates smart contract execution as a variant of the Flexible Job Shop Scheduling Problem (FJSS), optimizing both time and power consumption. Conthereum offers the most efficient open-source implementation compared to existing solutions. Empirical evaluations based on Ethereum, the most widely used blockchain platform, show near-linear throughput increases with available computational power. Additionally, an integrated energy consumption model allows participant to optimize power usage by intelligently distributing workloads across cores. This solution not only boosts network TPS and energy efficiency, offering a scalable and sustainable framework for blockchain transaction processing. The proposed approach also opens new avenues for further optimizations in Ethereum and is adaptable for broader applications in other blockchain infrastructures.