Practical Secure Aggregation by Combining Cryptography and Trusted Execution Environments
Abstract
Secure aggregation enables a group of mutually distrustful parties, each holding private inputs, to collaboratively compute an aggregate value while preserving the privacy of their individual inputs. However, a major challenge in adopting secure aggregation approaches for practical applications is the significant computational overhead of the underlying cryptographic protocols, e.g. fully homomorphic encryption. This overhead makes secure aggregation protocols impractical, especially for large datasets. In contrast, hardware-based security techniques such as trusted execution environments (TEEs) enable computation at near-native speeds, making them a promising alternative for reducing the computational burden typically associated with purely cryptographic techniques. Yet, in many scenarios, parties may opt for either cryptographic or hardware-based security mechanisms, highlighting the need for hybrid approaches. In this work, we introduce several secure aggregation architectures that integrate both cryptographic and TEE-based techniques, analyzing the trade-offs between security and performance.