Neural mechanisms of predictive processing: a collaborative community experiment through the OpenScope program
Abstract
This review synthesizes advances in predictive processing within the sensory cortex. Predictive processing theorizes that the brain continuously predicts sensory inputs, refining neuronal responses by highlighting prediction errors. We identify key computational primitives, such as stimulus adaptation, dendritic computation, excitatory/inhibitory balance and hierarchical processing, as central to this framework. Our review highlights convergences, such as top-down inputs and inhibitory interneurons shaping mismatch signals, and divergences, including species-specific hierarchies and modality-dependent layer roles. To address these conflicts, we propose experiments in mice and primates using in-vivo two-photon imaging and electrophysiological recordings to test whether temporal, motor, and omission mismatch stimuli engage shared or distinct mechanisms. The resulting dataset, collected and shared via the OpenScope program, will enable model validation and community analysis, fostering iterative refinement and refutability to decode the neural circuits of predictive processing.