PestMA: LLM-based Multi-Agent System for Informed Pest Management
Abstract
Effective pest management is complex due to the need for accurate, context-specific decisions. Recent advancements in large language models (LLMs) open new possibilities for addressing these challenges by providing sophisticated, adaptive knowledge acquisition and reasoning. However, existing LLM-based pest management approaches often rely on a single-agent paradigm, which can limit their capacity to incorporate diverse external information, engage in systematic validation, and address complex, threshold-driven decisions. To overcome these limitations, we introduce PestMA, an LLM-based multi-agent system (MAS) designed to generate reliable and evidence-based pest management advice. Building on an editorial paradigm, PestMA features three specialized agents, an Editor for synthesizing pest management recommendations, a Retriever for gathering relevant external data, and a Validator for ensuring correctness. Evaluations on real-world pest scenarios demonstrate that PestMA achieves an initial accuracy of 86.8% for pest management decisions, which increases to 92.6% after validation. These results underscore the value of collaborative agent-based workflows in refining and validating decisions, highlighting the potential of LLM-based multi-agent systems to automate and enhance pest management processes.