A Novel Quantum Fourier Ordinary Differential Equation Solver for Solving Linear and Nonlinear Partial Differential Equations
Abstract
In this work, a novel quantum Fourier ordinary differential equation (ODE) solver is proposed to solve both linear and nonlinear partial differential equations (PDEs). Traditional quantum ODE solvers transform a PDE into an ODE system via spatial discretization and then integrate it, thereby converting the task of solving the PDE into computing the integral for the driving function $f(x)$. These solvers rely on the quantum amplitude estimation algorithm, which requires the driving function $f(x)$ to be within the range of [0, 1] and necessitates the construction of a quantum circuit for the oracle R that encodes $f(x)$. This construction can be highly complex, even for simple functions like $f(x) = x$. An important exception arises for the specific case of $f(x) = sin^2(mx+c)$, which can be encoded more efficiently using a set of $Ry$ rotation gates. To address these challenges, we expand the driving function $f(x)$ as a Fourier series and propose the Quantum Fourier ODE Solver. This approach not only simplifies the construction of the oracle R but also removes the restriction that $f(x)$ must lie within [0,1]. The proposed method was evaluated by solving several representative linear and nonlinear PDEs, including the Navier-Stokes (N-S) equations. The results show that the quantum Fourier ODE solver produces results that closely match both analytical and reference solutions.