Grothendieck-Springer resolutions and TQFTs
Abstract
Let $G$ be a connected complex semisimple group with Lie algebra $\mathfrak{g}$ and fixed Kostant slice $\mathrm{Kos}\subseteq\mathfrak{g}^*$. In a previous work, we show that $((T^*G)_{\text{reg}}\rightrightarrows\mathfrak{g}^*_{\text{reg}},\mathrm{Kos})$ yields the open Moore-Tachikawa TQFT. Morphisms in the image of this TQFT are called open Moore-Tachikawa varieties. By replacing $T^*G\rightrightarrows\mathfrak{g}^*$ and $\mathrm{Kos}\subseteq\mathfrak{g}^*$ with the double $\mathrm{D}(G)\rightrightarrows G$ and a Steinberg slice $\mathrm{Ste}\subseteq G$, respectively, one obtains quasi-Hamiltonian analogues of the open Moore-Tachikawa TQFT and varieties. We consider a conjugacy class $\mathcal{C}$ of parabolic subalgebras of $\mathfrak{g}$. This class determines partial Grothendieck-Springer resolutions $\mu_{\mathcal{C}}:\mathfrak{g}_{\mathcal{C}}\longrightarrow\mathfrak{g}^*=\mathfrak{g}$ and $\nu_{\mathcal{C}}:G_{\mathcal{C}}\longrightarrow G$. We construct a canonical symplectic groupoid $(T^*G)_{\mathcal{C}}\rightrightarrows\mathfrak{g}_{\mathcal{C}}$ and quasi-symplectic groupoid $\mathrm{D}(G)_{\mathcal{C}}\rightrightarrows G_{\mathcal{C}}$. In addition, we prove that the pairs $(((T^*G)_{\mathcal{C}})_{\text{reg}}\rightrightarrows(\mathfrak{g}_{\mathcal{C}})_{\text{reg}},\mu_{\mathcal{C}}^{-1}(\mathrm{Kos}))$ and $((\mathrm{D}(G)_{\mathcal{C}})_{\text{reg}}\rightrightarrows(G_{\mathcal{C}})_{\text{reg}},\nu_{\mathcal{C}}^{-1}(\mathrm{Ste}))$ determine TQFTs in a $1$-shifted Weinstein symplectic category. Our main result is about the Hamiltonian symplectic varieties arising from the former TQFT; we show that these have canonical Lagrangian relations to the open Moore-Tachikawa varieties. Pertinent specializations of our results to the full Grothendieck-Springer resolution are discussed throughout this manuscript.