Twitter/XGitHub

Diversity-Fair Online Selection

Published: Apr 14, 2025
Last Updated: Apr 15, 2025
Authors:Ming Hu, Yanzhi Li, Tongwen Wu

Abstract

Online selection problems frequently arise in applications such as crowdsourcing and employee recruitment. Existing research typically focuses on candidates with a single attribute. However, crowdsourcing tasks often require contributions from individuals across various demographics. Further motivated by the dynamic nature of crowdsourcing and hiring, we study the diversity-fair online selection problem, in which a recruiter must make real-time decisions to foster workforce diversity across many dimensions. We propose two scenarios for this problem. The fixed-capacity scenario, suited for short-term hiring for crowdsourced workers, provides the recruiter with a fixed capacity to fill temporary job vacancies. In contrast, in the unknown-capacity scenario, recruiters optimize diversity across recruitment seasons with increasing capacities, reflecting that the firm honors diversity consideration in a long-term employee acquisition strategy. By modeling the diversity over $d$ dimensions as a max-min fairness objective, we show that no policy can surpass a competitive ratio of $O(1/d^{1/3})$ for either scenario, indicating that any achievable result inevitably decays by some polynomial factor in $d$. To this end, we develop bilevel hierarchical randomized policies that ensure compliance with the capacity constraint. For the fixed-capacity scenario, leveraging marginal information about the arriving population allows us to achieve a competitive ratio of $1/(4\sqrt{d} \lceil \log_2 d \rceil)$. For the unknown-capacity scenario, we establish a competitive ratio of $\Omega(1/d^{3/4})$ under mild boundedness conditions. In both bilevel hierarchical policies, the higher level determines ex-ante selection probabilities and then informs the lower level's randomized selection that ensures no loss in efficiency. Both policies prioritize core diversity and then adjust for underrepresented dimensions.

Diversity-Fair Online Selection | Cybersec Research