Generalized Symmetries of Non-SUSY and Discrete Torsion String Backgrounds
Abstract
String / M-theory backgrounds with degrees of freedom at a localized singularity provide a general template for generating strongly correlated systems decoupled from lower-dimensional gravity. There are by now several complementary procedures for extracting the associated generalized symmetry data from orbifolds of the form $\mathbb{R}^6 / \Gamma$, including methods based on the boundary topology of the asymptotic geometry, as well as the adjacency matrix for fermionic degrees of freedom in the quiver gauge theory of probe branes. In this paper we show that this match between the two methods also works in non-supersymmetric and discrete torsion backgrounds. In particular, a refinement of geometric boundary data based on Chen-Ruan cohomology matches the expected answer based on quiver data. Additionally, we also show that free (i.e., non-torsion) factors count the number of higher-dimensional branes which couple to the localized singularity. We use this to also extract quadratic pairing terms in the associated symmetry theory (SymTh) for these systems, and explain how these considerations generalize to a broader class of backgrounds.