Mechanistic Modeling of Lipid Nanoparticle (LNP) Precipitation via Population Balance Equations (PBEs)
Abstract
Lipid nanoparticles (LNPs) are precisely engineered drug delivery carriers commonly produced through controlled mixing processes, such as nanoprecipitation. Since their delivery efficacy greatly depends on particle size, numerous studies have proposed experimental and theoretical approaches for tuning LNP size. However, the mechanistic model for LNP fabrication has rarely been established alongside experiments, limiting a profound understanding of the kinetic processes governing LNP self-assembly. Thus, we present a population balance equation (PBE)-based model that captures the evolution of the particle size distribution (PSD) during LNP fabrication, to provide mechanistic insight into how kinetic processes control LNP size. The model showed strong agreement with experimentally observed trends in the PSD. In addition to identifying the role of each kinetic process in shaping the PSD, we analyzed the underlying mechanisms of three key operational strategies: manipulation of (1) lipid concentration, (2) flow rate ratio (FRR), and (3) mixing rate. We identified that the key to producing precisely controlled particle size lies in controlling super-saturation and lipid dilution to regulate the balance between nucleation and growth. Our findings provide mechanistic understanding that is essential in further developing strategies for tuning LNP size.