PQ-CAN: A Framework for Simulating Post-Quantum Cryptography in Embedded Systems
Abstract
The rapid development of quantum computers threatens traditional cryptographic schemes, prompting the need for Post-Quantum Cryptography (PQC). Although the NIST standardization process has accelerated the development of such algorithms, their application in resource-constrained environments such as embedded systems remains a challenge. Automotive systems relying on the Controller Area Network (CAN) bus for communication are particularly vulnerable due to their limited computational capabilities, high traffic, and need for real-time response. These constraints raise concerns about the feasibility of implementing PQC in automotive environments, where legacy hardware and bit rate limitations must also be considered. In this paper, we introduce PQ-CAN, a modular framework for simulating the performance and overhead of PQC algorithms in embedded systems. We consider the automotive domain as our case study, testing a variety of PQC schemes under different scenarios. Our simulation enables the adjustment of embedded system computational capabilities and CAN bus bit rate constraints. We also provide insights into the trade-offs involved by analyzing each algorithm's security level and overhead for key encapsulation and digital signature. By evaluating the performance of these algorithms, we provide insights into their feasibility and identify the strengths and limitations of PQC in securing automotive communications in the post-quantum era.