Gaussian Approximation for High-Dimensional $U$-statistics with Size-Dependent Kernels
Abstract
Motivated by small bandwidth asymptotics for kernel-based semiparametric estimators in econometrics, this paper establishes Gaussian approximation results for high-dimensional fixed-order $U$-statistics whose kernels depend on the sample size. Our results allow for a situation where the dominant component of the Hoeffding decomposition is absent or unknown, including cases with known degrees of degeneracy as special forms. The obtained error bounds for Gaussian approximations are sharp enough to almost recover the weakest bandwidth condition of small bandwidth asymptotics in the fixed-dimensional setting when applied to a canonical semiparametric estimation problem. We also present an application to an adaptive goodness-of-fit testing, along with discussions about several potential applications.