Electronic transport properties of titanium nitride grown by molecular beam epitaxy
Abstract
This study investigates the molecular beam epitaxial (MBE) growth of titanium nitride (TiN) thin films, achieving a high residual resistivity ratio (RRR) of 15.8. We observed a strong correlation between growth temperature and crystalline quality, as reflected in both RRR values and lattice parameter variations. Characterization of superconductivity yielded a Ginzburg-Landau coherence length of 60.4 $\pm$ 0.6 nm, significantly higher than typical sputtered films, suggesting improved superconducting coherence. First-principles calculations, in conjunction with experimental data, provided detailed insights into the electronic structure and transport properties of the TiN films. Temperature-dependent Hall coefficient measurements further revealed the influence of anisotropic scattering mechanisms. These findings establish a promising route for the development of nitride-based superconducting materials for advanced quantum computing technologies.