Similarity Constrained CC2 for Efficient Coupled Cluster Nonadiabatic Dynamics
Abstract
Despite their high accuracy, standard coupled cluster models cannot be used for nonadiabatic molecular dynamics simulations because they yield unphysical complex excitation energies at conical intersections between same-symmetry excited states. On the other hand, similarity constrained coupled cluster theory has enabled the application of coupled cluster theory in such dynamics simulations. Here, we present a similarity constrained perturbative doubles (SCC2) model with same-symmetry excited-state conical intersections that exhibit correct topography, topology, and real excitation energies. This is achieved while retaining the favorable computational scaling of the standard CC2 model. We illustrate the model for conical intersections in hypofluorous acid and thymine, and compare its performance with other methods. The results demonstrate that conical intersections between excited states can be described correctly and efficiently at the SCC2 level. We therefore expect that the SCC2 model will enable coupled cluster nonadiabatic dynamics simulations for large molecular systems.