Velocity Distribution and Diffusion of an Athermal Inertial Run-and-Tumble Particle in a Shear-Thinning Medium
Abstract
We study the dynamics of an athermal inertial active particle moving in a shear-thinning medium in $d=1$. The viscosity of the medium is modeled using a Coulomb-tanh function, while the activity is represented by an asymmetric dichotomous noise with strengths $-\Delta$ and $\mu\Delta$, transitioning between these states at a rate $\lambda$. Starting from the Fokker-Planck~(FP) equation for the time-dependent probability distributions $P(v,-\Delta,t)$ and $P(v,\mu\Delta,t)$ of the particle's velocity $v$ at time $t$, moving under the influence of active forces $-\Delta$ and $\mu\Delta$ respectively, we analytically derive the steady-state velocity distribution function $P_s(v)$, explicitly dependent on $\mu$. Also, we obtain a quadrature expression for the effective diffusion coefficient $D_e$ for the symmetric active force case~($\mu=1$). For a given $\Delta$ and $\mu$, we show that $P_s(v)$ exhibits multiple transitions as $\lambda$ is varied. Subsequently, we numerically compute $P_s(v)$, the mean-squared velocity $\langle v^2\rangle(t)$, and the diffusion coefficient $D_e$ by solving the particle's equation of motion, all of which show excellent agreement with the analytical results in the steady-state. Finally, we examine the universal nature of the transitions in $P_s(v)$ by considering an alternative functional form of medium's viscosity that also capture the shear-thinning behavior.