Ideal antiferroelectricity with large digital electrostrain in PbZrO3 epitaxial thin films
Abstract
Antiferroelectrics exhibit reversible antipolar-polar phase transitions under electric fields, yielding large electrostrain suitable for electromechanical devices. Nevertheless, in thin-film form, the antiferroelectric behavior is often obscured by competing ferroic orders, resulting in slanted hysteresis loops with undesired remnant polarization, subsequently posing challenges in obtaining ideal antiferroelectricity and understanding their intrinsic electrical behavior. Here, atomistic models for controllable antiferroelectric-ferroelectric phase transition pathways are unveiled along specific crystallographic directions. Guided by the anisotropic phase transition and orientation design, we achieved ideal antiferroelectricity with square double hysteresis loop, large saturated polarization (~60 {\mu}C/cm2), near-zero remnant polarization, fast response time (~75 ns), and near-fatigue-free performance (~10^10 cycles) in (111)P-oriented PbZrO3 epitaxial thin films. Moreover, a bipolar and frequency-independent digital electrostrain (~0.83%) were demonstrated in this architype antiferroelectric system. In-situ X-ray diffraction studies further reveal that the large digital electrostrain results from intrinsic field-induced antiferroelectric-ferroelectric structural transition. This work demonstrates the anisotropic phase transition mechanism and ideal antiferroelectricity with large digital electrostrain in antiferroelectric thin films, offering a new avenue for applications of antiferroelectricity in nanoelectromechanical systems.