From Data Behavior to Code Analysis: A Multimodal Study on Security and Privacy Challenges in Blockchain-Based DApp
Abstract
The recent proliferation of blockchain-based decentralized applications (DApp) has catalyzed transformative advancements in distributed systems, with extensive deployments observed across financial, entertainment, media, and cybersecurity domains. These trustless architectures, characterized by their decentralized nature and elimination of third-party intermediaries, have garnered substantial institutional attention. Consequently, the escalating security challenges confronting DApp demand rigorous scholarly investigation. This study initiates with a systematic analysis of behavioral patterns derived from empirical DApp datasets, establishing foundational insights for subsequent methodological developments. The principal security vulnerabilities in Ethereum-based smart contracts developed via Solidity are then critically examined. Specifically, reentrancy vulnerability attacks are addressed by formally representing contract logic using highly expressive code fragments. This enables precise source code-level detection via bidirectional long short-term memory networks with attention mechanisms (BLSTM-ATT). Regarding privacy preservation challenges, contemporary solutions are evaluated through dual analytical lenses: identity privacy preservation and transaction anonymity enhancement, while proposing future research trajectories in cryptographic obfuscation techniques.