Dissecting coupled orders in a terahertz-driven electron-doped cuprate
Abstract
The interplay between superconductivity and charge density wave has often been studied from an equilibrium point of view. For example, using static tuning knobs such as doping, magnetic field and pressure, superconductivity can be enhanced or suppressed. The resulting effect on the co-existing charge density wave order, if any, is judged by variations in its ground state properties such as the ordering temperature or the spatial correlation. Such an approach can be understood as coordinated static displacements of two coupled order parameters within a Ginzburg-Landau description, evincing their interplay as either co-operative or competing but does not provide further microscopic information about the interaction. In order to assess such information, we dynamically perturb both orders from equilibrium and observe their coupling directly in the time-domain. We show that high-field multicycle terahertz pulses drive both the Higgs amplitude fluctuations of the superconducting order as well as collective fluctuations of the charge order in an electron-doped cuprate, resulting in characteristic third harmonic generation. A notable time delay is manifested between their respective driven dynamics. We propose that this may signify the important energy scale describing their coupling or imply a terahertz field-depinned charge density wave that destroys macroscopic superconductivity. Our work demonstrates a holistic approach for investigating coupled superconducting and charge density wave orders, which may shed novel light on their intertwined presence and widespread fluctuations in many classes of unconventional superconductors.