Bayesian random-effects meta-analysis of aggregate data on clinical events
Abstract
To appreciate intervention effects on rare events, meta-analysis techniques are commonly applied in order to assess the accumulated evidence. When it comes to adverse effects in clinical trials, these are often most adequately handled using survival methods. A common-effect model that is able to process data in commonly quoted formats in terms of hazard ratios has been proposed for this purpose by Holzhauer (Stat. Med. 2017; 36(5):723-737). In order to accommodate potential heterogeneity between studies, we have extended the model by Holzhauer to a random-effects approach. The Bayesian model is described in detail, and applications to realistic data sets are discussed along with sensitivity analyses and Monte Carlo simulations to support the conclusions.