Fermi surface and magnetic breakdown in PdGa
Abstract
We study the electronic structure of the chiral semimetal PdGa by means of the de Haas-van Alphen and Shubnikov-de Haas effect. We find that the Fermi surface of PdGa comprises multiple pockets split by spin-orbit coupling. We compare our experimental findings with the band structure calculated ab initio. We demonstrate that the quantum oscillation spectra can be fully understood by considering nodal plane degeneracies at the Brillouin zone boundary and magnetic breakdown between individual Fermi surface pockets. Expanding traditional analysis methods, we explicitly calculate magnetic breakdown frequencies and cyclotron masses while taking into account that extremal breakdown trajectories may reside away from the planes of the single-band orbits. We further analyze high-frequency contributions arising from breakdown trajectories involving multiple revolutions around the Fermi surface which are distinct from conventional harmonic frequencies. Our results highlight the existence of gaps induced by spin-orbit coupling throughout the band structure of PdGa, the relevance of nodal planes on the Brillouin zone boundary, and the necessity for a comprehensive analysis of magnetic breakdown.