Spontaneous symmetry breaking in the Heisenberg antiferromagnet on a triangular lattice
Abstract
We present a detailed investigation of an overlooked symmetry structure in non-collinear antiferromagnets that gives rise to an emergent quantum number for magnons. Focusing on the triangular-lattice Heisenberg antiferromagnet, we show that its spin order parameter transforms under an enlarged symmetry group, $\mathrm{SO(3)_L \times SO(3)_R}$, rather than the conventional spin-rotation group $\mathrm{SO(3)}$. Although this larger symmetry is spontaneously broken by the ground state, a residual subgroup survives, leading to conserved Noether charges that, upon quantization, endow magnons with an additional quantum number -- \emph{isospin} -- beyond their energy and momentum. Our results provide a comprehensive framework for understanding symmetry, degeneracy, and quantum numbers in non-collinear magnetic systems, and bridge an unexpected connection between the paradigms of symmetry breaking in non-collinear antiferromagnets and chiral symmetry breaking in particle physics.