A theoretical framework for flow-compatible reconstruction of heart motion
Abstract
Accurate three-dimensional (3D) reconstruction of cardiac chamber motion from time-resolved medical imaging modalities is of growing interest in both the clinical and biomechanical fields. Despite recent advancement, the cardiac motion reconstruction process remains complex and prone to uncertainties. Moreover, traditional assessments often focus on static comparisons, lacking assurances of dynamic consistency and physical relevance. This work introduces a novel paradigm of flow-compatible motion reconstruction, integrating anatomical imaging with flow data to ensure adherence to fundamental physical principles, such as mass and momentum conservation. The approach is demonstrated in the context of right ventricular motion, utilizing diffeomorphic mappings and multi-slice MRI to achieve dynamically consistent and physically robust reconstructions. Results show that enforcing flow compatibility within the reconstruction process is feasible and enhances the physical realism of the resulting kinematics.