Mass measurements of proton-rich nuclei in the vicinity of ${}^{84}$Mo and their impact on rp-process in type I X-ray burst
Abstract
We report on the mass measurement of the rapid proton-capture process key nuclide ${}^{84}$Mo and its vicinity, such as ${}^{78}$Y${}^{\rm m}$, ${}^{79}$Y, ${}^{83}$Nb, and ${}^{88}$Ru, using the multi-reflection time-of-flight spectrograph at RIKEN RIBF. For ${}^{78}$Y${}^{\rm m}$, ${}^{84}$Mo, and ${}^{88}$Ru, their masses are experimentally determined for the first time with uncertainties of $\delta m \approx 20~{\rm keV}$. The mass precision of ${}^{79}$Y and ${}^{83}$Nb is improved to 13 keV and 9.6 keV, respectively. The new $\alpha$-separation energy of ${}^{84}$Mo, 1.434(83) MeV, unambiguously rules out the possibility of forming the ZrNb cycle. The X-ray burst simulation with the new masses shows that our measurements effectively remove the large final abundance uncertainties in the $A=80-90$ mass region. The new mass values improve the prediction power for the composition of the nuclear ashes in X-ray bursts, including the production of light $p$-nuclei.