Spike-Kal: A Spiking Neuron Network Assisted Kalman Filter
Abstract
Kalman filtering can provide an optimal estimation of the system state from noisy observation data. This algorithm's performance depends on the accuracy of system modeling and noise statistical characteristics, which are usually challenging to obtain in practical applications. The powerful nonlinear modeling capabilities of deep learning, combined with its ability to extract features from large amounts of data automatically, offer new opportunities for improving the Kalman filter. This paper proposes a novel method that leverages the Spiking Neural Network to optimize the Kalman filter. Our approach aims to reduce the reliance on prior knowledge of system and observation noises, allowing for adaptation to varying statistical characteristics of time-varying noise. Furthermore, we investigate the potential of SNNs in improving the computational efficiency of the Kalman filter. In our method, we design an integration strategy between the SNN and the Kalman filter. The SNN is trained to directly approximate the optimal gain matrix from observation data, thereby alleviating the computational burden of complex matrix operations inherent in traditional Kalman filtering while maintaining the accuracy and robustness of state estimation. Its average error has been reduced by 18\%-65\% compared with other methods.