Status of the Proton EDM Experiment (pEDM)
Abstract
The Proton EDM Experiment (pEDM) is the first direct search for the proton electric dipole moment (EDM) with the aim of being the first experiment to probe the Standard Model (SM) prediction of any particle EDM. Phase-I of pEDM will achieve $10^{-29} e\cdot$cm, improving current indirect limits by four orders of magnitude. This will establish a new standard of precision in nucleon EDM searches and offer a unique sensitivity to better understand the Strong CP problem. The experiment is ideally positioned to explore physics beyond the Standard Model (BSM), with sensitivity to axionic dark matter via the signal of an oscillating proton EDM and across a wide mass range of BSM models from $\mathcal{O}(1\text{GeV})$ to $\mathcal{O}(10^3\text{TeV})$. Utilizing the frozen-spin technique in a highly symmetric storage ring that leverages existing infrastructure at Brookhaven National Laboratory (BNL), pEDM builds upon the technological foundation and experimental expertise of the highly successful Muon $g$$-$$2$ Experiments. With significant R\&D and prototyping already underway, pEDM is preparing a conceptual design report (CDR) to offer a cost-effective, high-impact path to discovering new sources of CP violation and advancing our understanding of fundamental physics. It will play a vital role in complementing the physics goals of the next-generation collider while simultaneously contributing to sustaining particle physics research and training early career researchers during gaps between major collider operations.