Questions: A Taxonomy for Critical Reflection in Machine-Supported Decision-Making
Abstract
Decision-makers run the risk of relying too much on machine recommendations. Explainable AI, a common strategy for calibrating reliance, has mixed and even negative effects, such as increasing overreliance. To cognitively engage the decision-maker and to facilitate a deliberate decision-making process, we propose a potential `reflection machine' that supports critical reflection about the pending decision, including the machine recommendation. Reflection has been shown to improve critical thinking and reasoning, and thus decision-making. One way to stimulate reflection is to ask relevant questions. To systematically create questions, we present a question taxonomy inspired by Socratic questions and human-centred explainable AI. This taxonomy can contribute to the design of such a `reflection machine' that asks decision-makers questions. Our work is part of the growing research on human-machine collaborations that goes beyond the paradigm of machine recommendations and explanations, and aims to enable greater human oversight as required by the European AI Act.