New Frontiers in Muon-Spin Spectroscopy Using Si-Pixel Detectors
Abstract
The study of novel quantum materials relies on muon-spin rotation, relaxation, or resonance (\mSR) measurements. Yet, a fundamental limitation persists: many of these materials can only be synthesized in extremely small quantities, often at sub-millimeter scales. While \mSR ~offers unique insights into electronic and magnetic properties, existing spectrometers lack a sub-millimeter spatial resolution and the possibility of triggerless pump-probe data acquisition, which would enable more advanced measurements. The General Purpose Surface-muon instrument (GPS) at the Paul Scherrer Institute (PSI) is currently limited to a muon stopping rate of \SI{40}{\kilo\hertz} to \SI{120}{\kilo\hertz}, a constraint that will become more pressing with the upcoming High-Intensity Muon Beam (HIMB) project. To overcome these challenges, we demonstrate the feasibility of employing ultra-thin monolithic Si-pixel detectors to reconstruct the stopping position of muons within the sample, thereby significantly enhancing the capability of measuring at higher muon rate. Additionally, we explore the first steps toward a triggerless pump-probe \mSR ~measurement scheme. Unlike conventional pump-probe techniques that require external triggers, a triggerless readout system can continuously integrate stimuli pulses into the data stream, allowing real-time tracking of ultra-fast dynamics in quantum materials. This approach will enable the study of transient states, spin dynamics, and quantum coherence under external stimuli.