Nonlinear wave dynamics on a chip
Abstract
Shallow water waves are a striking example of nonlinear hydrodynamics, giving rise to phenomena such as tsunamis and undular waves. These dynamics are typically studied in hundreds-of-meter-long wave flumes. Here, we demonstrate a chip-scale, quantum-enabled wave flume. The wave flume exploits nanometer-thick superfluid helium films and optomechanical interactions to achieve nonlinearities surpassing those of extreme terrestrial flows. Measurements reveal wave steepening, shock fronts, and soliton fission -- nonlinear behaviors long predicted in superfluid helium but never previously directly observed. Our approach enables lithography-defined wave flume geometries, optomechanical control of hydrodynamic properties, and orders of magnitude faster measurements than terrestrial flumes. Together, this opens a new frontier in hydrodynamics, combining quantum fluids and nanophotonics to explore complex wave dynamics at microscale.