Many-body cages: disorder-free glassiness from flat bands in Fock space, and many-body Rabi oscillations
Abstract
We identify the many-body counterpart of flat bands, which we call many-body caging, as a general mechanism for non-equilibrium phenomena such as a novel type of glassy eigenspectrum order and many-body Rabi oscillations in the time domain. We focus on constrained systems of great current interest in the context of Rydberg atoms and synthetic or emergent gauge theories. We find that their state graphs host motifs which produce flat bands in the many-body spectrum at a particular set of energies. Basis states in Fock space exhibit Edwards-Anderson type parameters in the absence of quenched disorder, with an intricate, possibly fractal, distribution over Fock space which is reflected in a distinctive structure of a non-vanishing post-quench long-time Loschmidt echo, an experimentally accessible quantity.In general, phenomena familiar from single-particle flat bands manifest themselves in characteristic many-body incarnations, such as a reentrant `Anderson' delocalisation, offering a rich ensemble of experimental signatures in the abovementioned quantum simulators. The variety of single-particle flat band types suggests an analogous typology--and concomitant phenomenological richness to be explored--of their many-body counterparts.