Absorption of Fermionic Dark Matter in the PICO-60 C$_{3}$F$_{8}$ Bubble Chamber
Published: Apr 17, 2025
Last Updated: Apr 17, 2025
Authors:E. Adams, B. Ali, R. Anderson-Dornan, I. J. Arnquist, M. Bai, D. Baxter, E. Behnke, B. Broerman, C. J. Chen, K. Clark, J. I. Collar, P. S. Cooper, D. Cranshaw, C. Cripe, M. Crisler, C. E. Dahl, M. Das, S. Das, S. Fallows, J. Farine, R. Filgas, A. García-Viltres, G. Giroux, O. Harris, H. Hawley-Herrera, T. Hillier, E. W. Hoppe, C. M. Jackson, M. Jin, C. B. Krauss, M. Laurin, I. Lawson, A. Leblanc, H. Leng, I. Levine, C. Licciardi, W. H. Lippincott, Q. Malin, P. Mitra, V. Monette, C. Moore, R. Neilson, A. J. Noble, H. Nozard, S. Pal, M. -C. Piro, S. Priya, C. Rethmeier, M. Robert, A. E. Robinson, J. Savoie, S. J. Sekula, A. Sonnenschein, N. Starinski, I. Štekl, M. Tripathi, E. Vázquez-Jáuregui, U. Wichoski, William Woodley, V. Zacek, J. Zhang
Abstract
Fermionic dark matter absorption on nuclear targets via neutral current interactions is explored using a non-relativistic effective field theory framework. An analysis of data from the PICO-60 C$_{3}$F$_{8}$ bubble chamber sets leading constraints on spin-independent absorption for dark matter masses below 23 MeV/$\textit{c}^2$ and establishes the first limits on spin-dependent absorptive interactions. These results demonstrate the sensitivity of bubble chambers to low-mass dark matter and underscore the importance of absorption searches in expanding the parameter space of direct detection experiments.