Constraints on Anisotropic Cosmic Birefringence from CMB B-mode Polarization
Abstract
Cosmic birefringence$-$the rotation of the polarization plane of light as it traverses the universe$-$offers a direct observational window into parity-violating physics beyond the Standard Model. In this work, we revisit the anisotropic component of cosmic birefringence, which leads to the generation of $B$-mode polarization in the cosmic microwave background (CMB). Using an exact theoretical treatment beyond the thin last-scattering surface approximation, we constrain the amplitude of anisotropic birefringence with combined polarization data from SPTpol, ACT, POLARBEAR, and BICEP. The joint analysis yields a best-fit amplitude of $A_{\rm CB} = 0.42^{+0.40}_{-0.34} \times 10^{-4}$, consistent with zero within $2\sigma$, and we place a 95\% confidence-level upper bound of $A_{\rm CB} < 1 \times 10^{-4}$. The constraint is not dominated by any single experiment and remains robust under the inclusion of a possible isotropic rotation angle. These results provide leading constraints on anisotropic cosmic birefringence from CMB $B$-mode polarization and illustrate the potential of upcoming experiments to improve sensitivity to parity-violating effects in the early universe.