Approximate Problems for Finite Transducers
Abstract
Finite (word) state transducers extend finite state automata by defining a binary relation over finite words, called rational relation. If the rational relation is the graph of a function, this function is said to be rational. The class of sequential functions is a strict subclass of rational functions, defined as the functions recognised by input-deterministic finite state transducers. The class membership problems between those classes are known to be decidable. We consider approximate versions of these problems and show they are decidable as well. This includes the approximate functionality problem, which asks whether given a rational relation (by a transducer), is it close to a rational function, and the approximate determinisation problem, which asks whether a given rational function is close to a sequential function. We prove decidability results for several classical distances, including Hamming and Levenshtein edit distance. Finally, we investigate the approximate uniformisation problem, which asks, given a rational relation $R$, whether there exists a sequential function that is close to some function uniformising $R$. As for its exact version, we prove that this problem is undecidable.