Topologically conjugate classification of diagonal operators
Abstract
Let $\ell^{p}$, $1\leq p<\infty$, be the Banach space of absolutely $p$-th power summable sequences and let $\pi_{n}$ be the natural projection to the $n$-th coordinate for $n\in\mathbb{N}$. Let $\mathfrak{W}=\{w_{n}\}_{n=1}^{\infty}$ be a bounded sequence of complex numbers. Define the operator $D_{\mathfrak{W}}: \ell^{p}\rightarrow\ell^{p}$ by, for any $x=(x_{1},x_{2},\ldots)\in \ell^p$, $\pi_{n}\circ D_{\mathfrak{W}}(x)=w_{n}x_{n}$ for all $n\geq1$. We call $D_{\mathfrak{W}}$ a diagonal operator on $\ell^{p}$. In this article, we study the topological conjugate classification of the diagonal operators on $\ell^{p}$. More precisely, we obtained the following results. $D_{\mathfrak{W}}$ and $D_{\vert\mathfrak{W}\vert}$ are topologically conjugate, where $\vert\mathfrak{W}\vert=\{\vert w_{n}\vert\}_{n=1}^{\infty}$. If $\inf_{n}\vert w_n\vert>1$, then $D_{\mathfrak{W}}$ is topologically conjugate to $2\mathbf{I}$, where $\mathbf{I}$ means the identity operator. Similarly, if $\inf_{n}\vert w_n\vert>0$ and $\sup_{n}\vert w_n\vert<1$, then $D_{\mathfrak{W}}$ is topologically conjugate to $\frac{1}{2}\mathbf{I}$. In addition, if $\inf_{n}\vert w_n\vert=1$ and $\inf_{n}\vert t_n\vert>1$, then $D_{\mathfrak{W}}$ and $D_{\mathfrak{T}}$ are not topologically conjugate.