Processing-in-memory for genomics workloads
Abstract
Low-cost, high-throughput DNA and RNA sequencing (HTS) data is the main workforce for the life sciences. Genome sequencing is now becoming a part of Predictive, Preventive, Personalized, and Participatory (termed 'P4') medicine. All genomic data are currently processed in energy-hungry computer clusters and centers, necessitating data transfer, consuming substantial energy, and wasting valuable time. Therefore, there is a need for fast, energy-efficient, and cost-efficient technologies that enable genomics research without requiring data centers and cloud platforms. We recently started the BioPIM Project to leverage the emerging processing-in-memory (PIM) technologies to enable energy and cost-efficient analysis of bioinformatics workloads. The BioPIM Project focuses on co-designing algorithms and data structures commonly used in genomics with several PIM architectures for the highest cost, energy, and time savings benefit.