Multipassage Landau-Zener tunneling oscillations in transverse/longitudinal dual dressing of atomic qubits
Abstract
We investigate the time evolution of a non-resonant dressed-atom qubit in an XZ original configuration. It is composed of two electromagnetic fields, one oscillating parallel and the other orthogonal to the quantisation magnetic static field. The experiments are performed in rubidium and caesium atomic magnetometers, confined in a magneto-optical trap and in a vapour cell, respectively. Static fields in the $\mu$T range and kHz oscillating fields with large Rabi frequencies are applied. This dual-dressing configuration is an extension of the Landau-Zener multipassage interferometry in the presence of an additional dressing field controlling the tunneling process by its amplitude and phase. Our measurement of the qubit coherence introduces additional features to the transition probability readout of standard interferometry. The coherence time evolution is characterized by oscillations at several frequencies, each of them produced by a different quantum contribution. Such frequency description introduces a new picture of the qubit multipassage evolution. Because the present low-frequency dressing operation does not fall within the standard Floquet engineering paradigm based on the high-frequency expansion, we develop an ad-hoc dressing perturbation treatment. Numerical simulations support the adiabatic and non-adiabatic qubit evolution.