Enhanced and modulable induced superconducting gap and effective Landé g-factor in Pb-InSb hybrid devices
Abstract
The hybrid system of a conventional superconductor (SC) on a semiconductor (SM) nanowire with strong spin-orbit coupling (SOC) represents a promising platform for achieving topological superconductivity and Majorana zero modes (MZMs) towards topological quantum computation. While aluminum (Al)-based hybrid nanowire devices have been widely utilized, their limited superconducting gap and intrinsic weak SOC as well as small Land\'e g-factor may hinder future experimental advancements. In contrast, we demonstrate that lead (Pb)-based hybrid quantum devices exhibit a remarkably large and hard proximity-induced superconducting gap, exceeding that of Al by an order of magnitude. By exploiting electrostatic gating to modulate wavefunction distribution and SC-SM interfacial coupling, this gap can be continuously tuned from its maximum value (~1.4 meV, matching the bulk Pb gap) down to nearly zero while maintaining the hardness. Furthermore, magnetic-field-dependent measurements reveal a radial evolution of the gap structure with anti-crossing feature, indicative of strong SOC and huge effective g-factors up to 76. These findings underscore the superior functionality of Pb-based hybrid systems, significantly advancing their potential for realizing and stabilizing MZMs and the further scalable topological quantum architectures.