On the Dynamics of Weighted Composition Operators
Published: Jun 4, 2025
Last Updated: Jun 4, 2025
Authors:Nilson C. Bernardes Jr., Antonio Bonilla, João V. A. Pinto
Abstract
We study the properties of power-boundedness, Li-Yorke chaos, distributional chaos, absolutely Ces\`aro boundedness and mean Li-Yorke chaos for weighted composition operators on $L^p(\mu)$ spaces and on $C_0(\Omega)$ spaces. We illustrate the general results by presenting several applications to weighted shifts on the classical sequence spaces $c_0(\mathbb{N})$, $c_0(\mathbb{Z})$, $\ell^p(\mathbb{N})$ and $\ell^p(\mathbb{Z})$ ($1 \leq p < \infty$) and to weighted translation operators on the classical function spaces $C_0[1,\infty)$, $C_0(\mathbb{R})$, $L^p[1,\infty)$ and $L^p(\mathbb{R})$ ($1 \leq p < \infty$).