Impact of border defects on the magnetic flux penetration in superconducting films
Abstract
Defects in superconducting systems are ubiquitous and nearly unavoidable. They can vary in nature, geometry, and size, ranging from microscopic-size defects such as dislocations, grain boundaries, twin planes, and oxygen vacancies, to macroscopic-size defects such as segregations, indentations, contamination, cracks, or voids. Irrespective of their type, defects perturb the otherwise laminar flow of electric current, forcing it to deviate from its path. In the best-case scenario, the associated perturbation can be damped within a distance of the order of the size of the defect if the rigidity of the superconducting state, characterized by the creep exponent $n$, is low. In most cases, however, this perturbation spans macroscopic distances covering the entire superconducting sample and thus dramatically influences the response of the system. In this work, we review the current state of theoretical understanding and experimental evidence on the modification of magnetic flux patterns in superconductors by border defects, including the influence of their geometry, temperature, and applied magnetic field. We scrutinize and contrast the picture emerging from a continuous media standpoint, i.e. ignoring the granularity imposed by the vortex quantization, with that provided by a phenomenological approach dictated by the vortex dynamics. In addition, we discuss the influence of border indentations on the nucleation of thermomagnetic instabilities. Assessing the impact of surface and border defects is of utmost importance for all superconducting technologies, including superconducting resonators, superconducting single-photon detectors, superconducting radio-frequency cavities and accelerators, superconducting cables, superconducting metamaterials, superconducting diodes, and many others.