Teaming in the AI Era: AI-Augmented Frameworks for Forming, Simulating, and Optimizing Human Teams
Abstract
Effective teamwork is essential across diverse domains. During the team formation stage, a key challenge is forming teams that effectively balance user preferences with task objectives to enhance overall team satisfaction. In the team performing stage, maintaining cohesion and engagement is critical for sustaining high team performance. However, existing computational tools and algorithms for team optimization often rely on static data inputs, narrow algorithmic objectives, or solutions tailored for specific contexts, failing to account for the dynamic interplay of team members personalities, evolving goals, and changing individual preferences. Therefore, teams may encounter member dissatisfaction, as purely algorithmic assignments can reduce members commitment to team goals or experience suboptimal engagement due to the absence of timely, personalized guidance to help members adjust their behaviors and interactions as team dynamics evolve. Ultimately, these challenges can lead to reduced overall team performance. My Ph.D. dissertation aims to develop AI-augmented team optimization frameworks and practical systems that enhance team satisfaction, engagement, and performance. First, I propose a team formation framework that leverages a multi-armed bandit algorithm to iteratively refine team composition based on user preferences, ensuring alignment between individual needs and collective team goals to enhance team satisfaction. Second, I introduce tAIfa (Team AI Feedback Assistant), an AI-powered system that utilizes large language models (LLMs) to deliver immediate, personalized feedback to both teams and individual members, enhancing cohesion and engagement. Finally, I present PuppeteerLLM, an LLM-based simulation framework that simulates multi-agent teams to model complex team dynamics within realistic environments, incorporating task-driven collaboration and long-term coordination.